Optimization of Longitudinal Alignment of an 4f System in a Compact Vectorial Optical-Field Generator Based on a High-Resolution Liquid Crystal Spatial Light Modulator
Abstract
:1. Introduction
2. Experimental Device and Principle
2.1. Compact Vectorial Optical-Field Generator
2.2. 4f System
2.2.1. The Structure of the 4f System
2.2.2. The Longitudinal Alignment of the 4f System
2.3. The Amplitude Modulation Principle of the Compact Vectorial Optical-field Generator
2.4. The Sharp Evaluation of the Image
2.4.1. The Eight-Direction Sobel Operator
2.4.2. The Roberts Function
3. Experimental Results and Discussion
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Cheng, W.; Han, W.; Zhan, Q. Compact flattop laser beam shaper using vectorial vortex. Appl. Opt. 2013, 52, 4608–4612. [Google Scholar] [CrossRef] [PubMed]
- Yao, A.M.; Padgett, M.J. Orbital angular momentum: Origins, behavior and applications. Adv. Opt. Photonics 2011, 3, 161–204. [Google Scholar]
- Wang, X.L.; Cai, X.D.; Su, Z.E.; Chen, M.C.; Wu, D.; Li, L.; Liu, N.L.; Lu, C.Y. Quantum teleportation of multiple degrees of freedom of a single photon. Nature 2015, 518, 516–519. [Google Scholar] [CrossRef]
- Shen, Y.; Wang, X.; Xie, Z.; Min, C.; Fu, X.; Liu, Q.; Gong, M.; Yuan, X. Optical vortices 30 years on: OAM manipulation from topological charge to multiple singularities. Light Sci. Appl. 2019, 8, 90. [Google Scholar] [PubMed]
- Chen, J.; Wan, C.; Zhan, Q. Vectorial optical fields: Recent advances and future prospects. Sci. Bull. 2018, 63, 54–74. [Google Scholar] [CrossRef]
- Zhan, Q. Cylindrical vector beams: From mathematical concepts to applications. Adv. Opt. Photonics 2009, 1, 1–57. [Google Scholar] [CrossRef]
- Rubinsztein-Dunlop, H.; Forbes, A.; Berry, M.V. Roadmap on structured light. J. Opt. 2017, 19, 013001. [Google Scholar] [CrossRef]
- Tan, H.; Hu, H.; Huang, L.; Qian, K. Plasmonic tweezers for optical manipulation and biomedical applications. Analyst 2020, 145, 5699–5712. [Google Scholar] [CrossRef]
- Ho, V.W.L.; Chang, Y.; Liu, Y.; Zhang, C.; Li, Y.; Davidson, R.R.; Little, B.E.; Wang, G.; Chu, S.T. Optical Trapping and Manipulating with a Silica Microring Resonator in a Self-Locked Scheme. Micromachines 2020, 11, 202. [Google Scholar] [CrossRef]
- Yu, Y.Z.; Zhan, Q.W. Optimization-free optical focal field engineering through reversing the radiation pattern from a uniform line source. Opt. Express 2015, 23, 7527–7534. [Google Scholar] [CrossRef]
- Pan, Y.; Gao, X.Z.; Zhang, G.L. Spin angular momentum density and transverse energy flow of tightly focused kaleidoscope-structured vector optical fields. APL Photonics 2019, 4, 096102. [Google Scholar] [CrossRef]
- Monroe, C. Quantum information processing with atoms and photons. Nature 2002, 416, 238–246. [Google Scholar] [CrossRef] [PubMed]
- Polino, E.; Valeri, M.; Spagnolo, N.; Sciarrino, F. Photonic quantum metrology. AVS Quantum Sci. 2020, 2, 024703. [Google Scholar] [CrossRef]
- Krüger, J.R.; Keller-Findeisen, J.; Geisler, C.; Egner, A. Tomographic STED microscopy. Biomed. Opt. Express 2020, 11, 3139–3163. [Google Scholar] [CrossRef]
- Tamburini, F.; Anzolin, G.; Umbriaco, G.; Bianchini, A.; Barbieri, C. Overcoming the Rayleigh criterion limit with optical vortices. Phys. Rev. Lett. 2006, 97, 163903. [Google Scholar] [CrossRef] [PubMed]
- Harke, B.; Keller, J.; Ullal, C.K.; Westphal, V.; Schönle, A.; Hell, S.W. Resolution scaling in STED microscopy. Opt. Express 2008, 16, 4154–4416. [Google Scholar] [CrossRef]
- Zhan, Q. Trapping metallic Rayleigh particles with radial polarization. Opt. Express 2004, 12, 3377–3382. [Google Scholar] [CrossRef]
- Xue, Y.; Wang, Y.; Zhou, S.; Chen, H.W.; Rui, G.; Gu, B.; Zhan, Q. Focus shaping and optical manipulation using highly focused second-order full Poincaré beam. J. Opt. Soc. Am. A 2018, 35, 953–958. [Google Scholar] [CrossRef]
- Willner, A.E.; Huang, H.; Yan, Y.; Ren, Y.; Ahmed, N.; Xie, G.; Bao, C.; Li, L.; Cao, Y.; Zhao, Z.; et al. Optical communications using orbital angular momentum beams. Adv. Opt. Photonics 2015, 7, 66–106. [Google Scholar] [CrossRef]
- Rodrigo, J.A.; Alieva, T. Vector polymorphic beam. Sci. Rep. 2018, 8, 7698. [Google Scholar] [CrossRef]
- Han, W.; Yang, Y.; Cheng, W.; Zhan, Q. Vectorial optical field generator for the creation of arbitrarily complex fields. Opt. Express 2013, 21, 20692–20706. [Google Scholar] [CrossRef]
- Zhou, Y.; Li, X.; Cai, Y.; Zhang, Y.; Yan, S.; Zhou, M.; Li, M.; Yao, B. Compact optical module to generate arbitrary vector vortex beams. Appl. Opt. 2020, 59, 8932–8938. [Google Scholar] [CrossRef] [PubMed]
- Chen, J.; Wang, Y.; Wan, C.; Lu, K.; Liu, Y.; Zhan, Q. Compact vectorial optical field generator based on a 10-megapixel resolution liquid crystal spatial light modulator. Opt. Commun. 2021, 495, 127112. [Google Scholar] [CrossRef]
- Pyhtila, J.; Wax, A. Improved interferometric detection of scattered light with a 4f imaging system. Appl. Opt. 2005, 44, 1785–1791. [Google Scholar] [CrossRef]
- Wei, H.; Wen, C.; Zhan, Q. Design and alignment strategies of 4f systems used in the vectorial optical field generator. Appl. Opt. 2015, 54, 2275–2283. [Google Scholar]
- Chen, J.; Wan, C.; Kong, L.; Zhan, Q. Precise transverse alignment of spatial light modulator sections for complex optical field generation. Appl. Opt. 2017, 56, 2614–2620. [Google Scholar] [CrossRef]
- Emilia, M.; Maurice, W.; Vincent, T. Simple phase-shifting lateral shearing interferometer. Opt. Express 2014, 29, 1264–1266. [Google Scholar]
- Kenny, F.; Lara, D.; Rodríguez-Herrera, O.G.; Dainty, C. Complete polarization and phase control for focus-shaping in high-NA microscopy. Opt. Express 2012, 20, 14015–14029. [Google Scholar] [CrossRef]
- Liu, W.; Wang, L. Quantum image edge detection based on eight-direction Sobel operator for NEQR. Quantum Inf. Process. 2022, 21, 190. [Google Scholar] [CrossRef]
- Albdour, N.; Zanoon, N. A Steganographic Method Based on Roberts Operator. Int. J. Electr. Eng. 2020, 6, 265–273. [Google Scholar] [CrossRef]
The Optical Spot Images | The Light Energy Values |
---|---|
0 | 724,034,311.19 |
1/4 | 697,780,583.14 |
1/2 | 826,344,804.78 |
3/4 | 633,813,389.00 |
1 | 686,753,913.44 |
The Optical Spot Images | The Sharpness Values (×107) |
---|---|
0 | 1.5056499 |
1/4 | 1.7762937 |
1/2 | 2.1146577 |
3/4 | 2.3256987 |
1 | 2.5117032 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Li, M.; Liu, Y. Optimization of Longitudinal Alignment of an 4f System in a Compact Vectorial Optical-Field Generator Based on a High-Resolution Liquid Crystal Spatial Light Modulator. Photonics 2023, 10, 894. https://doi.org/10.3390/photonics10080894
Li M, Liu Y. Optimization of Longitudinal Alignment of an 4f System in a Compact Vectorial Optical-Field Generator Based on a High-Resolution Liquid Crystal Spatial Light Modulator. Photonics. 2023; 10(8):894. https://doi.org/10.3390/photonics10080894
Chicago/Turabian StyleLi, Mingyu, and Yuanzheng Liu. 2023. "Optimization of Longitudinal Alignment of an 4f System in a Compact Vectorial Optical-Field Generator Based on a High-Resolution Liquid Crystal Spatial Light Modulator" Photonics 10, no. 8: 894. https://doi.org/10.3390/photonics10080894
APA StyleLi, M., & Liu, Y. (2023). Optimization of Longitudinal Alignment of an 4f System in a Compact Vectorial Optical-Field Generator Based on a High-Resolution Liquid Crystal Spatial Light Modulator. Photonics, 10(8), 894. https://doi.org/10.3390/photonics10080894