Large-Range Switchable Asymmetric Transmission and Circular Conversion Dichroism in a VO2 Based Metasurface
Abstract
:1. Introduction
2. Design and Simulations
3. Giant and Switchable Asymmetric Transmission
4. Giant and Switchable Circular Conversion Dichroism
5. The Principle of Chiral Effects
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Hwang, J.; Song, M.H.; Park, B.; Nishimura, S.; Toyooka, T.; Wu, J.W.; Takanishi, Y.; Ishikawa, K.; Takezoe, H. Electro-tunable optical diode based on photonic bandgap liquid-crystal heterojunctions. Nat. Mater. 2005, 4, 383–387. [Google Scholar] [CrossRef] [PubMed]
- Li, Z.; Jiang, C.; Wang, K.; Liu, M.; Li, C.; Tian, C.; Zhang, H.; Zhang, Y. Active manipulation of Dirac semimetals supported chiral coding metasurfaces for multifunctional applications in terahertz region. Results Phys. 2023, 46, 106323. [Google Scholar] [CrossRef]
- Valev, V.K.; Baumberg, J.J.; Sibilia, C.; Verbiest, T. Chirality and chiroptical effects in plasmonic nanostructures: Fundamentals, recent progress, and outlook. Adv. Mater. 2013, 25, 2517–2534. [Google Scholar] [CrossRef] [PubMed]
- Zhan, P.; Dutta, P.K.; Wang, P.; Song, G.; Dai, M.; Zhao, S.X.; Wang, Z.G.; Yin, P.; Zhang, W.; Ding, B.; et al. Reconfigurable Three-Dimensional Gold Nanorod Plasmonic Nanostructures Organized on DNA Origami Tripod. ACS Nano 2017, 11, 1172–1179. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Warning, L.A.; Miandashti, A.R.; McCarthy, L.A.; Zhang, Q.; Landes, C.F.; Link, S. Nanophotonic Approaches for Chirality Sensing. ACS Nano 2021, 15, 15538–15566. [Google Scholar] [CrossRef] [PubMed]
- Basiri, A.; Chen, X.; Bai, J.; Amrollahi, P.; Carpenter, J.; Holman, Z.; Wang, C.; Yao, Y. Nature-inspired chiral metasurfaces for circular polarization detection and full-Stokes polarimetric measurements. Light Sci. Appl. 2019, 8, 78. [Google Scholar] [CrossRef] [Green Version]
- Droulias, S.; Bougas, L. Absolute Chiral Sensing in Dielectric Metasurfaces Using Signal Reversals. Nano Lett. 2020, 20, 5960–5966. [Google Scholar] [CrossRef]
- Cheng, Y.; Yu, J.; Li, X. Tri-band high-efficiency circular polarization convertor based on double-split-ring resonator structures. Appl. Phys. B 2021, 128, 1. [Google Scholar] [CrossRef]
- Khan, P.; Brennan, G.; Li, Z.; Al Hassan, L.; Rice, D.; Gleeson, M.; Mani, A.A.; Tofail, S.A.M.; Xu, H.; Liu, N.; et al. Circular Polarization Conversion in Single Plasmonic Spherical Particles. Nano Lett. 2022, 22, 1504–1510. [Google Scholar] [CrossRef]
- Cheng, Y.; Zhu, X.; Li, J.; Chen, F.; Luo, H.; Wu, L. Terahertz broadband tunable reflective cross-polarization convertor based on complementary cross-shaped graphene metasurface. Phys. E Low-Dimens. Syst. Nanostructures 2021, 134, 114893. [Google Scholar] [CrossRef]
- Gandolfi, M.; Tognazzi, A.; Rocco, D.; De Angelis, C.; Carletti, L. Near-unity third-harmonic circular dichroism driven by a quasibound state in the continuum in asymmetric silicon metasurfaces. Phys. Rev. A 2021, 104, 023524. [Google Scholar] [CrossRef]
- Barron, L.D. Molecular Light Scattering and Optical Activity; Cambridge University Press: Cambridge, UK, 2009. [Google Scholar]
- Ma, Z.; Li, Y.; Li, Y.; Gong, Y.; Maier, S.A.; Hong, M. All-dielectric planar chiral metasurface with gradient geometric phase. Opt. Express 2018, 26, 6067–6078. [Google Scholar] [CrossRef] [Green Version]
- Zeng, Y.; Xu, J.; Xiao, W.; Yang, Z.; Chen, H.; Liu, Y. Giant 2D-chiroptical response in an achiral metasurface integrated with black phosphorus. Opt. Express 2022, 30, 8266–8274. [Google Scholar] [CrossRef] [PubMed]
- Rana, A.S.; Kim, I.; Ansari, M.A.; Anwar, M.S.; Saleem, M.; Tauqeer, T.; Danner, A.; Zubair, M.; Mehmood, M.Q.; Rho, J. Planar Achiral Metasurfaces-Induced Anomalous Chiroptical Effect of Optical Spin Isolation. ACS Appl. Mater. Interfaces 2020, 12, 48899–48909. [Google Scholar] [CrossRef] [PubMed]
- Shi, T.; Deng, Z.L.; Geng, G.; Zeng, X.; Zeng, Y.; Hu, G.; Overvig, A.; Li, J.; Qiu, C.W.; Alù, A.; et al. Planar chiral metasurfaces with maximal and tunable chiroptical response driven by bound states in the continuum. Nat. Commun. 2022, 13, 4111. [Google Scholar] [CrossRef] [PubMed]
- Cui, Y.; Wang, X.; Jiang, H.; Jiang, Y. High-efficiency and tunable circular dichroism in chiral graphene metasurface. J. Phys. D Appl. Phys. 2021, 55, 135102. [Google Scholar] [CrossRef]
- Tao, X.; Qi, L.; Fu, T.; Wang, B.; Uqaili, J.A.; Lan, C. A tunable dual-band asymmetric transmission metasurface with strong circular dichroism in the terahertz communication band. Opt. Laser Technol. 2022, 150, 107932. [Google Scholar] [CrossRef]
- Jiang, H.; Peng, K.; Cui, Y.; Zhong, J.; Zhang, H.; Jiang, Y.; Zhao, W. Design and simulation of a GST-based metasurface with strong and switchable circular dichroism. Opt. Lett. 2022, 47, 1907–1910. [Google Scholar] [CrossRef] [PubMed]
- Dong, G.; Qin, C.; Lv, T.; Sun, M.; Lv, B.; Li, Y.; Li, P.; Zhu, Z.; Guan, C.; Shi, J. Dynamic chiroptical responses in transmissive metamaterial using phase-change material. J. Phys. D Appl. Phys. 2020, 53, 285104. [Google Scholar] [CrossRef]
- Lv, T.; Li, Y.; Qin, C.; Qu, J.; Lv, B.; Li, W.; Zhu, Z.; Li, Y.; Guan, C.; Shi, J. Versatile polarization manipulation in vanadium dioxide-integrated terahertz metamaterial. Opt. Express 2022, 30, 5439–5449. [Google Scholar] [CrossRef]
- Yang, J.-K.; Jeong, H.-S. Switchable Metasurface with VO2 Thin Film at Visible Light by Changing Temperature. Photonics 2021, 8, 57. [Google Scholar] [CrossRef]
- Baranzadeh, F.; Nozhat, N. High Performance Plasmonic Nano-Biosensor Based on Tunable Ultra-Narrowband Perfect Absorber Utilizing Liquid Crystal. Plasmonics 2020, 16, 253–262. [Google Scholar] [CrossRef]
- Qin, F.; Chen, X.; Yi, Z.; Yao, W.; Yang, H.; Tang, Y.; Yi, Y.; Li, H.; Yi, Y. Ultra-broadband and wide-angle perfect solar absorber based on TiN nanodisk and Ti thin film structure. Sol. Energy Mater. Sol. Cells 2020, 211, 110535. [Google Scholar] [CrossRef]
- Wen, Q.Y.; Zhang, H.W.; Yang, Q.H.; Xie, Y.S.; Chen, K.; Liu, Y.L. Terahertz metamaterials with VO2 cut-wires for thermal tunability. Appl. Phys. Lett. 2010, 97, 021111. [Google Scholar] [CrossRef]
- Zhang, C.; Zhou, G.; Wu, J.; Tang, Y.; Wen, Q.; Li, S.; Han, J.; Jin, B.; Chen, J.; Wu, P. Active Control of Terahertz Waves Using Vanadium-Dioxide-Embedded Metamaterials. Phys. Rev. Appl. 2019, 11, 054016. [Google Scholar] [CrossRef]
- Jin, G.; Ren, Y.; Tang, B. Numerical Simulations of Circular Dichroism and Polarization Conversion in VO2-Based Terahertz Metamaterials. Crystals 2023, 13, 437. [Google Scholar] [CrossRef]
- Li, B.; Camacho-Morales, R.; Li, N.; Tognazzi, A.; Gandolfi, M.; de Ceglia, D.; De Angelis, C.; Sukhorukov, A.A.; Neshev, D.N. Fundamental limits for transmission modulation in VO2 metasurfaces. Photonics Res. 2022, 11, B40–B49. [Google Scholar] [CrossRef]
- Tripathi, A.; John, J.; Kruk, S.; Zhang, Z.; Nguyen, H.S.; Berguiga, L.; Romeo, P.R.; Orobtchouk, R.; Ramanathan, S.; Kivshar, Y.; et al. Tunable Mie-Resonant Dielectric Metasurfaces Based on VO2 Phase-Transition Materials. ACS Photonics 2021, 8, 1206–1213. [Google Scholar] [CrossRef]
- Zhang, Y.; Jing, B.; Liu, S.; Hao, X.; Luo, Z.; Zou, J.; Yin, S.; Huang, W.; Zhang, W. Conversion and Active Control between Electromagnetic Induced Transparency and Absorber in Terahertz Metasurface. Photonics 2023, 10, 159. [Google Scholar] [CrossRef]
- Howes, A.; Zhu, Z.; Curie, D.; Avila, J.R.; Wheeler, V.D.; Haglund, R.F.; Valentine, J.G. Optical Limiting Based on Huygens’ Metasurfaces. Nano Lett. 2020, 20, 4638–4644. [Google Scholar] [CrossRef]
- de Ceglia, D.; Gandolfi, M.; Antonietta Vincenti, M.; Tognazzi, A.; Franceschini, P.; Cino, A.C.; Ambrosio, G.; Baratto, C.; Li, B.; Camacho-Morales, R.; et al. Transient guided-mode resonance metasurfaces with phase-transition materials. Opt. Lett. 2023, 48, 2961–2964. [Google Scholar] [CrossRef] [PubMed]
- Lv, T.T.; Li, Y.X.; Ma, H.F.; Zhu, Z.; Li, Z.P.; Guan, C.Y.; Shi, J.H.; Zhang, H.; Cui, T.J. Hybrid metamaterial switching for manipulating chirality based on VO2 phase transition. Sci. Rep. 2016, 6, 23186. [Google Scholar] [CrossRef] [PubMed]
- Liu, M.; Plum, E.; Li, H.; Duan, S.; Li, S.; Xu, Q.; Zhang, X.; Zhang, C.; Zou, C.; Jin, B.; et al. Switchable Chiral Mirrors. Adv. Opt. Mater. 2020, 8, 2000247. [Google Scholar] [CrossRef]
- Lv, T.; Chen, X.; Dong, G.; Liu, M.; Liu, D.; Ouyang, C.; Zhu, Z.; Li, Y.; Guan, C.; Han, J.; et al. Dual-band dichroic asymmetric transmission of linearly polarized waves in terahertz chiral metamaterial. Nanophotonics 2020, 9, 3235–3242. [Google Scholar] [CrossRef] [Green Version]
- Luo, C.; Sang, T.; Li, S.; Yang, C.; Ge, Z.; Wang, Y. Stretchable Chiral Metamaterial for Flexible Control of Broadband Asymmetric Transmission. Plasmonics 2022, 18, 29–37. [Google Scholar] [CrossRef]
- Hu, F.; Wang, L.; Quan, B.; Xu, X.; Li, Z.; Wu, Z.; Pan, X. Design of a polarization insensitive multiband terahertz metamaterial absorber. J. Phys. D Appl. Phys. 2013, 46, 195103. [Google Scholar] [CrossRef]
- Singh, R.; Plum, E.; Menzel, C.; Rockstuhl, C.; Azad, A.K.; Cheville, R.A.; Lederer, F.; Zhang, W.; Zheludev, N.I. Terahertz metamaterial with asymmetric transmission. Phys. Rev. B 2009, 80, 153104. [Google Scholar] [CrossRef] [Green Version]
- Jiang, H.; Zhao, W.; Jiang, Y. All-dielectric circular polarizer with nearly unit transmission efficiency based on cascaded tensor Huygens surface. Opt. Express 2016, 24, 17738–17745. [Google Scholar] [CrossRef]
- Asgari, S.; Rahmanzadeh, M. Tunable circular conversion dichroism and asymmetric transmission of terahertz graphene metasurface composed of split rings. Opt. Commun. 2020, 456, 124623. [Google Scholar] [CrossRef]
- Tang, B.; Ren, Y. Tunable and switchable multi-functional terahertz metamaterials based on a hybrid vanadium dioxide-graphene integrated configuration. Phys. Chem. Chem. Phys. 2022, 24, 8408–8414. [Google Scholar] [CrossRef]
Nano-Structures | Bandwidths | AT | CCD/CD | Switching Capability | Active Materials | Years |
---|---|---|---|---|---|---|
Twisted S-shaped structure [23] | 0.4–2.0 THz | 0.73 | CD = 0.28 | No | / | 2020 |
split rings [40] | 0.5–4 THz | 0.36 | CCD = 0.36 | Yes | graphene | 2020 |
multilayered structure [41] | 7.5–10.7 THz | 0.34 | CD = 0.42 | Yes | VO2–graphene | 2021 |
split rectangular annulus [18] | 0.2–0.8 THz | 0.77 | CD = 0.53 | Yes | graphene | 2021 |
Split rings [22] | 0.4–0.8 THz | 0.12 | CCD = 0.75 | Yes | VO2 | 2020 |
“G”-and “J”-shaped hybrid structure | 0.5–1.0 THz | 0.95 | CCD = 0.92 | Yes | VO2 | This work |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhao, S.; Jiang, H.; Wang, J.; Zhu, W.; Zhao, W. Large-Range Switchable Asymmetric Transmission and Circular Conversion Dichroism in a VO2 Based Metasurface. Photonics 2023, 10, 893. https://doi.org/10.3390/photonics10080893
Zhao S, Jiang H, Wang J, Zhu W, Zhao W. Large-Range Switchable Asymmetric Transmission and Circular Conversion Dichroism in a VO2 Based Metasurface. Photonics. 2023; 10(8):893. https://doi.org/10.3390/photonics10080893
Chicago/Turabian StyleZhao, Songliang, Huan Jiang, Jingyu Wang, Wenchang Zhu, and Weiren Zhao. 2023. "Large-Range Switchable Asymmetric Transmission and Circular Conversion Dichroism in a VO2 Based Metasurface" Photonics 10, no. 8: 893. https://doi.org/10.3390/photonics10080893
APA StyleZhao, S., Jiang, H., Wang, J., Zhu, W., & Zhao, W. (2023). Large-Range Switchable Asymmetric Transmission and Circular Conversion Dichroism in a VO2 Based Metasurface. Photonics, 10(8), 893. https://doi.org/10.3390/photonics10080893