X-ray 3D Imaging of Low-Density Laser-Target Materials
Abstract
:1. Introduction
2. Materials and Methods
2.1. Low-Density Materials in Laser Targets
2.2. Phase Contrast X-ray Tomography with the Synchrotron Radiation
3. Results
3.1. Microsphere in a Polymer Cylinder
3.2. CHO Foam Loaded with High-Z
4. Discussion
- To determine the feasibility of characterizing the low-density material 3D aerogel network), which is only a few times denser than air under normal conditions;
- To assess the visibility and reconstruction capabilities of the nanostructured aerogel network within the solid parts of the target assembly;
- To demonstrate the potential of synchrotron tomography for characterizing the entire target, encompassing all its constituents simultaneously.
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Liao, J.; Wu, Y.; Shao, Y.; Feng, Y.; Zhang, X.; Zhang, W.; Li, J.; Wu, M.; Dong, H.; Liu, Q.; et al. Ammonia borane methanolysis for hydrogen evolution on Cu3Mo2O9/NiMoO4 hollow microspheres. Chem. Eng. J. 2022, 449, 137755. [Google Scholar] [CrossRef]
- Wang, Y.; Chen, D.; Qin, L.; Liang, J.; Huang, Y. Hydrogenated ZnIn2S4 microspheres: Boosting photocatalytic hydrogen evolution by sulfur vacancy engineering and mechanism insight. Phys. Chem. Chem. Phys. 2019, 21, 25484–25494. [Google Scholar] [CrossRef] [PubMed]
- Chao, W.; Wang, S.; Li, Y.; Cao, G.; Zhao, Y.; Sun, X.; Wang, C.; Ho, S.-H. Natural sponge-like wood-derived aerogel for solar-assisted adsorption and recovery of high-viscous crude oil. Chem. Eng. J. 2020, 400, 125865. [Google Scholar] [CrossRef]
- Dong, J.; Zeng, J.; Wang, B.; Cheng, Z.; Xu, J.; Gao, W.; Chen, K. Mechanically Flexible Carbon Aerogel with Wavy Layers and Springboard Elastic Supporting Structure for Selective Oil/Organic Solvent Recovery. ACS Appl. Mater. Interfaces 2021, 13, 15910–15924. [Google Scholar] [CrossRef]
- Merkul’ev, Y.A. Low-density absorber—Converter of laser fusion target with direct laser beams irradiation. In Proceedings of the Russian-China Seminar, Chengdu, China, 29 March–3 April 1992. [Google Scholar]
- Merkuliev, Y.A. Low density high-Z layer for indirect target converters. In Proceedings of the China-Russia Seminar, Chengdu, China, 11–14 May 1993. [Google Scholar]
- Khalenkov, A.M.; Borisenko, N.G.; Kondrashov, V.N.; Merkuliev, Y.A.; Limpouch, J.; Pimenov, V.G. Experience of micro-heterogeneous target fabrication to study energy transport in plasma near critical density. Laser Part. Beams 2006, 24, 283–290. [Google Scholar] [CrossRef]
- Melsheimer, F.; Ranis, M.; Grützmacher, D.; Juschkin, L. High speed imaging of Z-pinch gas discharge in extreme ultraviolet and model-based three-dimensional reconstruction of emitting volume. Rev. Sci. Instrum. 2022, 93, 013503. [Google Scholar] [CrossRef] [PubMed]
- Wachulak, P.W.; Torrisi, A.; Krauze, W.; Bartnik, A.; Kostecki, J.; Maisano, M.; Sciortino, A.M.; Fiedorowicz, H. A “water window” tomography based on a laser-plasma double-stream gas-puff target soft X-ray source. Appl. Phys. B 2019, 125, 70. [Google Scholar] [CrossRef]
- Mikhailov, Y.V.; Lemeshko, B.D.; Prokuratov, I.A. Experimental dependence of the neutron yield on the discharge current for plasma focus chambers filled with deuterium and deuterium-tritium. Plasma Phys. Rep. 2019, 45, 334–344. [Google Scholar] [CrossRef]
- Avraham, E.B.; Porath, Y. The use of a dense plasma focus accelerator in nuclear physics. Nucl. Instrum. Methods 1975, 123, 5–9. [Google Scholar] [CrossRef]
- Artyukov, I.A.; Borisenko, N.G.; Kasyanov, Y.S.; Khalenkov, A.M.; Pimenov, V.G.; Vinogradov, A.V. Fabrication and characterization of low-density polymer laser targets both with or without high-Z dopants. In Proceedings of the 29th European Conference on Laser Interaction with Matter (ECLIM), Madrid, Spain, 11–16 June 2006. [Google Scholar]
- Artyukov, I.; Feschenko, R.; Vinogradov, A.; Bugayev, Y.A.; Devizenko, O.; Kondratenko, V.; Kasyanov, Y.S.; Hatano, T.; Yamamoto, M.; Saveliev, S. Soft X-ray imaging of thick carbon-based materials using the normal incidence multilayer optics. Micron 2010, 41, 722–728. [Google Scholar] [CrossRef] [Green Version]
- Borisenko, N.G.; Akunets, A.A.; Artyukov, I.A.; Gorodnichev, K.E.; Merkuliev, Y.A. X-ray tomography of the growing silica gel with a density gradient. Fusion Sci. Technol. 2009, 55, 477–483. [Google Scholar] [CrossRef]
- Montgomery, D.S. X-ray phase contrast imaging in inertial confinement fusion and high energy density research. Rev. Sci. Instrum. 2023, 94, 021103. [Google Scholar] [CrossRef] [PubMed]
- Levin, V.; Petronyuk, Y.; Artyukov, I.; Bukreeva, I.; Malykhin, A.; Longo, E.; D’Amico, L.; Giannoukos, K.; Tromba, G. Three-Dimensional Study of Polymer Composite Destruction in the Early Stages. Polymers 2023, 15, 276. [Google Scholar] [CrossRef] [PubMed]
- Quereilhac, D.; Pinsard, L.; Guillou, E.; Fazzini, M.; De Luycker, E.; Bourmaud, A.; Abida, M.; Perrin, J.; Weitkamp, T.; Ouagne, P. Exploiting synchrotron X-ray tomography for a novel insight into flax-fibre defects ultrastructure. Ind. Crops Prod. 2023, 198, 116655. [Google Scholar] [CrossRef]
- Quinn, P.D.; Cacho-Nerin, F.; Gomez-Gonzalez, M.A.; Parker, J.E.; Poon, T.; Walker, J.M. Differential phase contrast for quantitative imaging and spectro-microscopy at a nanoprobe beamline. J. Synchrotron Rad. 2023, 30, 200–207. [Google Scholar] [CrossRef]
- Borisenko, L.A.; Borisenko, N.G.; Mikhailov, Y.A.; Orekhov, A.S.; Sklizkov, G.V.; Chekmarev, A.M.; Shapkin, A.A. Time evolution of the distribution function for stochastically heated relativistic electrons in a laser field of picosecond duration. Quantum Electron. 2017, 47, 915–921. [Google Scholar] [CrossRef]
- Rosmej, O.N.; Andreev, N.E.; Zaehter, S.; Zahn, N.; Christ, P.; Borm, B.; Radon, T.; Sokolov, A.; Pugachev, L.P.; Khaghani, D.; et al. Interaction of relativistically intense laser pulses with long-scale near critical plasmas for optimization of laser based sources of MeV electrons and gamma-rays. New J. Phys. 2019, 21, 043044. [Google Scholar] [CrossRef] [Green Version]
- Rosmej, O.N.; Gyrdymov, M.; Günther, M.M.; Andreev, N.E.; Tavana, P.; Neumayer, P.; Zähter, S.; Zahn, N.; Popov, V.S.; Borisenko, N.G.; et al. High-current laser-driven beams of relativistic electrons for high energy density research. Plasma Phys. Control Fusion 2020, 62, 115024. [Google Scholar] [CrossRef]
- Falconer, J.W.; Golnazarians, W.; Baker, M.J.; Sutton, D.W. Fabrication of cylindrical, microcellular foam-filled targets for laser-driven experiments. Vac. Sci. Technol. A 1990, 8, 968–971. [Google Scholar] [CrossRef]
- Horsfield, C.J.; Nazarov, W.; Oades, K. In-situ polymerization of foam filled laser targets with two regions of different densities, separated by a thin film. Fusion Technol. 1999, 35, 95–100. [Google Scholar] [CrossRef]
- Gromov, A.I.; Borisenko, N.G.; Gus’Kov, S.Y.; Merkul’ev, Y.A.; Mitrofanov, A.V. Fabrication and monitoring of advanced low-density media for ICF targets. Laser Part. Beams 1999, 17, 661–670. [Google Scholar] [CrossRef]
- Borisenko, N.G.; Gromov, A.I.; Merkulev, Y.A.; Mitrofanov, A.V.; Nazarov, W. Regular foams, loaded foams and capsule suspension in the foam for hohlraums in ICF. Fusion Technol. 2000, 38, 115–118. [Google Scholar] [CrossRef]
- Polikarpov, M.; Bourenkov, G.; Snigireva, I.; Snigirev, A.; Zimmermann, S.; Csanko, K.; Brockhauser, S.; Schneider, T.R. Visualization of protein crystals by high-energy phase-contrast X-ray imaging. Acta Crystallogr. D 2019, 75, 947–958. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Santos, K.F.; Jovin, S.M.; Weber, G.; Pena, V.; Lührmann, R.; Wahl, M.C. Structural basis for functional cooperation between tandem helicase cassettes in Brr2-mediated remodeling of the spliceosome. Proc. Natl. Acad. Sci. USA 2012, 109, 17418–17423. [Google Scholar] [CrossRef] [PubMed]
- Wang, Z.; Bovik, A.C.; Sheikh, H.R.; Simoncelli, E.P. Image quality assessment: From error visibility to structural similarity. IEEE Trans. Image Process. 2004, 13, 600–612. [Google Scholar] [CrossRef] [Green Version]
- Cloetens, P.; Ludwig, W.; Baruchel, J.; Van Dyck, D.; Van Landuyt, J.; Guigay, J.P.; Schlenker, M. Holotomography: Quantitative phase tomography with micrometer resolution using hard synchrotron radiation x rays. Appl. Phys. Lett. 1999, 75, 2912–2914. [Google Scholar] [CrossRef]
- Zabler, S.; Cloetens, P.; Guigay, J.P.; Baruchel, J.; Schlenker, M. Optimization of phase contrast imaging using hard x rays. Rev. Sci. Instrum. 2005, 76, 073705. [Google Scholar] [CrossRef]
- Gursoy, D.; De Carlo, F.; Xiao, X.; Jacobsen, C. TomoPy: A framework for the analysis of synchrotron tomographic data. J. Synchrotron Rad. 2014, 21, 1188–1193. [Google Scholar] [CrossRef] [Green Version]
- Günther, M.M.; Rosmej, O.N.; Tavana, P.; Gyrdymov, M.; Skobliakov, A.; Kantsyrev, A.; Zähter, S.; Borisenko, N.G.; Pukhov, A.; Andreev, N.E. Forward-looking insights in laser-generated ultra-intense γ-ray and neutron sources for nuclear application and science. Nat. Commun. 2022, 13, 170. [Google Scholar] [CrossRef]
- Borisenko, N.G.; Akunets, A.A.; Borisenko, L.A.; Gromov, A.I.; Orekhov, A.S.; Pastukhov, A.V.; Pimenov, V.G.; Tolokonnikov, S.M.; Sklizkov, G.V. “Noizy” low-density targets that worked as bright emitters under laser illumination. J. Phys. Conf. Ser. 2020, 1692, 012026. [Google Scholar] [CrossRef]
- Borisenko, N.G.; Mercul’ev, Y.A. Laser Thermonuclear Targets and Superdurable Microballoons; Isakov, A.I., Ed.; Nova Science Publishers: Hauppauge, NY, USA, 1996. [Google Scholar]
- Borisenko, N.G.; Dorogotovtsev, V.M.; Gromov, A.I.; Guskov, S.Y.; Merkul’ev, Y.A.; Markushkin, Y.E.; Chirin, N.A.; Shikov, A.K.; Petrunin, V.F. Laser Targets of Beryllium Deuteride. Fusion Technol. 2000, 38, 161–165. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Artyukov, I.; Borisenko, N.; Burenkov, G.; Eriskin, A.; Polikarpov, M.; Vinogradov, A. X-ray 3D Imaging of Low-Density Laser-Target Materials. Photonics 2023, 10, 875. https://doi.org/10.3390/photonics10080875
Artyukov I, Borisenko N, Burenkov G, Eriskin A, Polikarpov M, Vinogradov A. X-ray 3D Imaging of Low-Density Laser-Target Materials. Photonics. 2023; 10(8):875. https://doi.org/10.3390/photonics10080875
Chicago/Turabian StyleArtyukov, Igor, Natalia Borisenko, Gleb Burenkov, Alexander Eriskin, Maxim Polikarpov, and Alexander Vinogradov. 2023. "X-ray 3D Imaging of Low-Density Laser-Target Materials" Photonics 10, no. 8: 875. https://doi.org/10.3390/photonics10080875
APA StyleArtyukov, I., Borisenko, N., Burenkov, G., Eriskin, A., Polikarpov, M., & Vinogradov, A. (2023). X-ray 3D Imaging of Low-Density Laser-Target Materials. Photonics, 10(8), 875. https://doi.org/10.3390/photonics10080875