Efficient LED-Array Optical Wireless Power Transmission System for Portable Power Supply and Its Compact Modularization
Abstract
:1. Introduction
2. Efficiency for Optical Wireless Power Transmission
2.1. Factors of OWPT System Efficiency
2.2. Efficiency Evaluation of LED Collimation Scheme
3. High Efficiency and Compact LED-OWPT System
3.1. Design and Experimental Setup
3.2. Simulation and Experiment Results
3.3. Discussion of Effective Surface Irradiation
4. Integrated Module for Portable Power Supply
4.1. Demonstration of Portable Power Source Module
4.2. Thermal Performance of Portable Power Source Module
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Conflicts of Interest
References
- Jin, K.; Zhou, W. Wireless Laser Power Transmission: A Review of Recent Progress. IEEE Trans. Power Electron. 2019, 34, 3842–3859. [Google Scholar] [CrossRef]
- Jawad, A.M.; Nordin, R.; Gharghan, S.K.; Jawad, H.M.; Ismail, M. Opportunities and Challenges for Near-Field Wireless Power Transfer: A Review. Energies 2017, 10, 1022. [Google Scholar] [CrossRef]
- Cheah, W.C.; Watson, S.A.; Lennox, B. Limitations of Wireless Power Transfer Technologies for Mobile Robots. Wirel. Power Transf. 2019, 6, 175–189. [Google Scholar] [CrossRef] [Green Version]
- Miyamoto, T. Optical Wireless Power Transmission Using VCSELs. In Semiconductor Lasers and Laser Dynamics VIII; SPIE: Bellingham, WA, USA, 2018; Volume 10682, p. 1068204. [Google Scholar] [CrossRef]
- Qaraqe, M.; Usman, M.; Serbes, A.; Ansari, I.S.; Alouini, M.-S. Power Hotspots in Space: Powering CubeSats via Inter-Satellite Optical Wireless Power Transfer. IEEE Internet Things Mag. 2022, 5, 180–185. [Google Scholar] [CrossRef]
- Setiawan Putra, A.W.; Tanizawa, M.; Maruyama, T. Optical Wireless Power Transmission Using Si Photovoltaic through Air, Water, and Skin. IEEE Photonics Technol. Lett. 2019, 31, 157–160. [Google Scholar] [CrossRef]
- Tai, Y.; Miyamoto, T. Experimental Characterization of High Tolerance to Beam Irradiation Conditions of Light Beam Power Receiving Module for Optical Wireless Power Transmission Equipped with a Fly-Eye Lens System. Energies 2022, 15, 7388. [Google Scholar] [CrossRef]
- Nguyen, D.H. Optical Wireless Power Transfer for Moving Objects as A Life-Support Technology. In Proceedings of the 2020 IEEE 2nd Global Conference on Life Sciences and Technologies (LifeTech), Kyoto, Japan, 10–12 March 2020; pp. 405–408. [Google Scholar] [CrossRef]
- Shindo, N.; Kobatake, T.; Masson, D.; Fafard, S.; Matsuura, M. Optically Powered and Controlled Drones Using Optical Fibers for Airborne Base Stations. Photonics 2022, 9, 882. [Google Scholar] [CrossRef]
- Malche, T.; Maheshwary, P. Internet of Things (IoT) for Building Smart Home System. In Proceedings of the 2017 International Conference on I-SMAC (IoT in Social, Mobile, Analytics and Cloud) (I-SMAC), Palladam, India, 10–11 February 2017; pp. 65–70. [Google Scholar] [CrossRef]
- Riza, N.A.; Marraccini, P.J. Power Smart In-Door Optical Wireless Link Applications. In Proceedings of the 2012 8th International Wireless Communications and Mobile Computing Conference (IWCMC), Limassol, Cyprus, 27–31 August 2012; pp. 327–332. [Google Scholar] [CrossRef]
- Marraccini, P.J.; Riza, N.A. Smart Multiple-Mode Indoor Optical Wireless Design and Multimode Light Source Smart Energy-Efficient Links. Opt. Eng. 2013, 52, 055001. [Google Scholar] [CrossRef]
- Jeon, S.O.; Lee, K.H.; Kim, J.S.; Ihn, S.-G.; Chung, Y.S.; Kim, J.W.; Lee, H.; Kim, S.; Choi, H.; Lee, J.Y. High-Efficiency, Long-Lifetime Deep-Blue Organic Light-Emitting Diodes. Nat. Photonics 2021, 15, 208–215. [Google Scholar] [CrossRef]
- Piprek, J. Energy Efficiency Analysis of GaN-Based Blue Light Emitters. ECS J. Solid State Sci. Technol. 2019, 9, 015008. [Google Scholar] [CrossRef]
- IEC 62471:2006 | IEC Webstore. Available online: https://webstore.iec.ch/publication/7076 (accessed on 4 May 2023).
- Rizzo, L.; Duncan, K.J.; Zunino, J.L.; Federici, J.F. Direct Beam Hazard Analysis of Large Beam Diameters for Laser Power Beaming. J. Laser Appl. 2018, 30, 032017. [Google Scholar] [CrossRef]
- Zhou, Y.; Miyamoto, T. 200 MW-Class LED-Based Optical Wireless Power Transmission for Compact IoT. Jpn. J. Appl. Phys. 2019, 58, SJJC04. [Google Scholar] [CrossRef]
- Zhou, Y.; Miyamoto, T. 400 MW Class High Output Power from LED-Array Optical Wireless Power Transmission System for Compact IoT. IEICE Electron. Express 2021, 18, 20200405. [Google Scholar] [CrossRef]
- Uchiyama, N.; Yamada, H. Proposal and Demonstration of LED Optical Wireless Power-Transmission Systems for Battery-Operated Small Electronic Devices. Jpn. J. Appl. Phys. 2020, 59, 124501. [Google Scholar] [CrossRef]
- Wuthibenjaphonchai, N.; Haruta, M.; Sasagawa, K.; Tokuda, T.; Carrara, S.; Ohta, J. Wearable and Battery-Free Health-Monitoring Devices with Optical Power Transfer. IEEE Sens. J. 2021, 21, 9402–9412. [Google Scholar] [CrossRef]
- Zhao, M.; Miyamoto, T. Optimization for Compact and High Output LED-Based Optical Wireless Power Transmission System. Photonics 2022, 9, 14. [Google Scholar] [CrossRef]
- Zhao, M.; Miyamoto, T. 1 W High Performance LED-Array Based Optical Wireless Power Transmission System for IoT Terminals. Photonics 2022, 9, 576. [Google Scholar] [CrossRef]
- Saeedifard, M.; Graovac, M.; Dias, R.F.; Iravani, R. DC Power Systems: Challenges and Opportunities. In Proceedings of the IEEE PES General Meeting, Minneapolis, MN, USA, 25–29 July 2010; pp. 1–7. [Google Scholar] [CrossRef]
- Florescu, M.; Lee, H.; Puscasu, I.; Pralle, M.; Florescu, L.; Ting, D.Z.; Dowling, J.P. Improving Solar Cell Efficiency Using Photonic Band-Gap Materials. Sol. Energy Mater. Sol. Cells 2007, 91, 1599–1610. [Google Scholar] [CrossRef]
- Helmers, H.; Lopez, E.; Höhn, O.; Lackner, D.; Schön, J.; Schauerte, M.; Schachtner, M.; Dimroth, F.; Bett, A.W. 68.9% Efficient GaAs-Based Photonic Power Conversion Enabled by Photon Recycling and Optical Resonance. Phys. Status Solidi (RRL)–Rapid Res. Lett. 2021, 15, 2100113. [Google Scholar] [CrossRef]
- OSRAM OSLON® Black, SFH 4715AS IR LEDs—Ams-Osram. Available online: https://ams-osram.com/products/leds/ir-leds/osram-oslon-black-sfh-4715as (accessed on 4 May 2023).
- Zhou, Y.; Miyamoto, T. Tolerant Distance and Alignment Deviation Analysis of LED-Based Portable Optical Wireless Power Transmission System for Compact IoT. IEEJ Trans. Electron. Inf. Syst. 2021, 141, 1274–1280. [Google Scholar] [CrossRef]
- Tang, J.; Matsunaga, K.; Miyamoto, T. Numerical Analysis of Power Generation Characteristics in Beam Irradiation Control of Indoor OWPT System. Opt. Rev. 2020, 27, 170–176. [Google Scholar] [CrossRef]
- Ben Abdelmlek, K.; Araoud, Z.; Ghnay, R.; Abderrazak, K.; Charrada, K.; Zissis, G. Effect of Thermal Conduction Path Deficiency on Thermal Properties of LEDs Package. Appl. Therm. Eng. 2016, 102, 251–260. [Google Scholar] [CrossRef]
- Wang, N.; Gao, C.; Ding, C.; Jia, H.-Z.; Sui, G.-R.; Gao, X.-M. A Thermal Management System to Reuse Thermal Waste Released by High-Power Light-Emitting Diodes. IEEE Trans. Electron. Devices 2019, 66, 4790–4797. [Google Scholar] [CrossRef]
- Thermal Properties: Material Thermal Properties Database. Available online: https://ncfs.ucf.edu/burn_db/Thermal_Properties/material_thermal.html (accessed on 4 May 2023).
- Guo, Y.; Ruan, K.; Shi, X.; Yang, X.; Gu, J. Factors Affecting Thermal Conductivities of the Polymers and Polymer Composites: A Review. Compos. Sci. Technol. 2020, 193, 108134. [Google Scholar] [CrossRef]
Notation | Description |
---|---|
Radiant flux of power source | |
System total irradiation power | |
Optical receiver surface irradiation power | |
Irradiation power on lens system front surface | |
Emergence power from lens system back surface | |
Effective irradiance on receiver surface | |
Photoelectric conversion efficiency of receiver | |
Electrical input power on power source | |
Electrical output power from receiver |
Model | OSRAM, SFH 4715AS |
---|---|
Wavelength | 850 nm |
FWHM | 30 nm |
Radiant flux | 1.53 W |
Divergence angle | ±60° |
Emitting panel area | 1 × 1 mm2 |
Efficiency | Sim. Result | Exp. Result |
---|---|---|
Emitting side efficiency () | N/A | 30% |
Lens system efficiency () | 72.1% | 70.1% |
divergence power rate () | 9.2% | 10.8% |
Lens system transmissivity () | 90.6% | 87% |
effective surface irradiation () | 60.9% | 56.2% |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhao, M.; Miyamoto, T. Efficient LED-Array Optical Wireless Power Transmission System for Portable Power Supply and Its Compact Modularization. Photonics 2023, 10, 824. https://doi.org/10.3390/photonics10070824
Zhao M, Miyamoto T. Efficient LED-Array Optical Wireless Power Transmission System for Portable Power Supply and Its Compact Modularization. Photonics. 2023; 10(7):824. https://doi.org/10.3390/photonics10070824
Chicago/Turabian StyleZhao, Mingzhi, and Tomoyuki Miyamoto. 2023. "Efficient LED-Array Optical Wireless Power Transmission System for Portable Power Supply and Its Compact Modularization" Photonics 10, no. 7: 824. https://doi.org/10.3390/photonics10070824
APA StyleZhao, M., & Miyamoto, T. (2023). Efficient LED-Array Optical Wireless Power Transmission System for Portable Power Supply and Its Compact Modularization. Photonics, 10(7), 824. https://doi.org/10.3390/photonics10070824