
Citation: Zhao, M.; Miyamoto, T.

Efficient LED-Array Optical Wireless

Power Transmission System for

Portable Power Supply and Its

Compact Modularization. Photonics

2023, 10, 824. https://doi.org/

10.3390/photonics10070824

Received: 23 June 2023

Revised: 13 July 2023

Accepted: 13 July 2023

Published: 14 July 2023

Copyright: © 2023 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

photonics
hv

Article

Efficient LED-Array Optical Wireless Power Transmission
System for Portable Power Supply and Its
Compact Modularization
Mingzhi Zhao and Tomoyuki Miyamoto *

Laboratory for Future Interdisciplinary Research of Science and Technology (FIRST), Institute of Innovative
Research (IIR), Tokyo Institute of Technology, R2-39, 4259 Nagatsuta, Midori-ku, Yokohama 226-8503, Japan;
zhao.m.ab@m.titech.ac.jp
* Correspondence: tmiyamot@pi.titech.ac.jp; Tel.: +81-45-924-5059

Abstract: Optical wireless power transmission (OWPT) has been a promising solution for remote
power supply, eliminating the need for power cables or batteries. In this paper, we propose a
light emitting diode (LED) array based OWPT system with improved transmission efficiency and
compact system dimension. In this experiment, the proposed four-LED-array collimation scheme
achieved a lens system efficiency as high as 70%, while obtaining an electrical power of 0.8 W from a
50 × 50 mm2 GaAs solar cell at 1 m. The emitting side with the lens system was integrated into a
120 × 114 × 61 mm3 portable device by 3D printing. In addition, the thermal performance of the
integrated module and the effective surface irradiance at the receiving side were analyzed in detail.
The proposed system exhibits high efficiency and portability, with the advantageous potential to
temporarily power remote devices.

Keywords: optical wireless power transmission; LED; GaAs solar cell; IoT; far-field WPT

1. Introduction

The growing demand for powering devices remotely has led to the development of
various wireless power transmission (WPT) methods. Among these techniques, optical
wireless power transmission (OWPT) has emerged as a promising technology and received
notable attention in recent years [1]. Compared with the near-field WPT methods, such
as electromagnetic induction and magnetic resonance [2], OWPT offers significant advan-
tages, including long transmission distance and high directionality [3]. In addition, when
compared with the microwave WPT of far-field methods, OWPT has a small configuration
and long distance transmission with high beam collection ratio. Furthermore, OWPT does
not suffer from the problem of electromagnetic interference (EMI) [4].

OWPT has a wide range of applications in various scenarios, including in space [5],
under water [6,7], and with mobile objects [8,9], as well as the Internet of Things (IoT).
The IoT involves connecting numerous and various devices to the Internet for remote
monitoring and control [10]. OWPT provides a charging solution to enable IoT devices to
operate in remote or mobile locations with fewer restrictions. It eliminates the need for
a wired power source or battery replacement. Therefore, the development of a portable
OWPT system for IoT terminals is highly attractive.

Recently, light emitting diodes (LEDs) have been considered a potential option for
an OWPT power source. Some smart optical wireless link research related to LED light
sources has been designed since 2012 [11,12]. LEDs have a long lifetime, low temperature
dependence, and high emission efficiency [13]. Compared to laser diodes (LD), LEDs are
considered the safer power source due to their low spatial coherence. The emission mecha-
nism of LEDs is to generate incoherent light by spontaneous electron-hole recombination
with a broad energy spectrum [14]. As a result, LEDs exhibit lower directionality and lower
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power density compared to LDs. Although the maximum permissible exposure (MPE)
regulation for LED products [15] cannot be solely determined by the power density, it is
generally easier for LEDs to comply with the MPE regulation as a 1 W level power source
with a suitable irradiation area [16]. In addition, LEDs operating at this low output level can
configure a compact and lightweight heat sink design, allowing for easy integration into
portable devices. The low temperature dependence of the device performance is effective
in this compact configuration.

As for the research on LED-OWPT, the first high-performance system was reported
by Zhou et al. in 2019, which achieved an electrical output of 200 mW from a 2.9 cm2

solar cell at a distance of 1 m [17]. The power source with lenses was modularized into
a portable device of 116 × 116 × 132 mm3. Subsequently, the output level was increased
to 400 mW in 2021 [18]. Some research groups have explored the implementation of the
LED-OWPT concept. Uchiyama et al. presented an LED-OWPT system which could power
small electronic devices without batteries [19]. Wuthibenjaphonchai et al. demonstrated
a wearable glucose sensor powered by an LED for diabetes-monitoring [20]. In 2022, the
authors’ group optimized the LED-OWPT output and obtained 500 mW from a 25 cm2

GaAs solar cell at 1 m distance [21]. Recently, the highest output of 1 W was achieved from
the same size solar cell [22]. However, the efficiency was not optimal and 65% of the optical
power was lost during the transmission process. For the development of LED-OWPT, it
will primarily focus on designing an efficient system and ensuring its applicability to a
wide range of actual operating conditions.

In this research, we aim to propose an LED-OWPT system with improved efficiency.
An OWPT system is specifically designed to be compact and portable, providing an efficient
solution for a temporary power source. Section 2 outlines the efficiency factors of an OWPT
system and evaluates the design of an LED collimation lens system. In Section 3, the
simulation and experimental results illustrate the performance of the improved lens system.
Additionally, it discusses the effective surface irradiation on the receiving side. In Section 4,
the LEDs with the lens system are integrated as a portable device. And the thermal
performance is measured and analyzed. Section 5 concludes the report.

2. Efficiency for Optical Wireless Power Transmission
2.1. Factors of OWPT System Efficiency

Efficiency is one of the most important factors of all wireless power transmission
systems. In this section, OWPT efficiency is analyzed in elementary terms. Figure 1 shows a
basic OWPT system, which is simplified as a light source, a lens system, and a light receiver
(solar cell). Although the receiver does not receive sunlight, the term “solar cell” is used
because the device operates on the same fundamental principle of photovoltaic conversion.
From the perspective of the OWPT radiation, transmission, and irradiation process, the
efficiencies of the entire systems are mainly divided into three parts: the emitting side
efficiency, the lens system efficiency, and the receiving side efficiency.
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Emitting side efficiency (ηemit) is the ratio of a power source’s radiant flux (Φ) to
its electrical input power (Pin). It represents the electro-optical conversion ability of a
power source.

ηemit =
Φ
Pin

(1)

Lens system efficiency (ηlens) is defined as the ratio of the total system irradiation
power after a lens system (Isys) to the radiant flux of the power source (Φ). It is used
to evaluate the performance of the lens system in an OWPT, and is the main factor of
this research.

ηlens =
Isys

Φ
(2)

Receiving side efficiency (ηrecv) is the product of the receiver photoelectric conversion
efficiency (ηPV) and the effective surface irradiance (ηsur f ); ηrecv quantifies the overall
efficiency of the irradiation power at the receiving side into the electrical output. Here, ηPV
also includes the effect of light intensity distribution within the solar cell module, while
Isur f is the surface irradiation intensity at the solar cell surface and Pout is the electrical
output from the solar cell.

ηrecv = ηsur f × ηPV =
Isur f

Isys
× Pout

Isur f
(3)

As for the lens system efficiency, there are two factors: the transmissivity (T) and
the divergence power rate (ηdiv). Lens transmissivity (T) is defined as the ratio of the
emergent power from the lens system back surface (Elens) to the irradiation power on the
front surface (Ilens):

T =
Elens
Ilens

(4)

It is noted that the lens transmissivity does not include power absorption or scattering
in the transmission medium. They are collectively considered in Equation (2). The diver-
gence power in an OWPT emitting side is a part of the power source’s radiant power that
is scattered out of the lens system area, thereby, the divergence power rate (ηdiv) is:

ηdiv =
Φ − Ilens

Φ
(5)

These factors are used to evaluate the efficiency of an OWPT system. The symbols
used in this research are listed in Table 1.

Table 1. Symbols for numerical analysis.

Notation Description

Φ Radiant flux of power source
Isys System total irradiation power
Isur f Optical receiver surface irradiation power
Ilens Irradiation power on lens system front surface
Elens Emergence power from lens system back surface
ηsur f Effective irradiance on receiver surface
ηPV Photoelectric conversion efficiency of receiver
Pin Electrical input power on power source
Pout Electrical output power from receiver

2.2. Efficiency Evaluation of LED Collimation Scheme

In an OWPT system, the emitting side efficiency ηemit is determined by the semicon-
ductor properties, material quality, and device structure of the power source [23]. Similarly,
the photoelectric conversion efficiency ηPV of the receiver is also determined by the wave-
length and the semiconductor bandgap [24]. The above two efficiencies are not analyzed in
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this paper. Previous research by the authors’ group has proved that a combination of an
850 nm near-infrared light source and a flexible-type GaAs solar cell can achieve a high
efficiency ηPV of 41.7% [17]. Even higher conversion efficiencies of 69% have been reported
by the GaAs-based structure at an 858 nm wavelength, coupled with optimized beam
irradiation conditions [25]. This research focuses on optimizing the lens system efficiency
ηlens through non-imaging optics design.

We have proposed the LED collimation lens scheme [21], which consists of a colli-
mation lens and an imaging lens. The configuration simulated by the optical simulation
software (Zemax 2022, OpticStudio Premium, USA) is shown in Figure 2. The LED is
placed at the front focal point of the collimation lens. Table 2 shows the parameters of
the selected LED model [26]. The generated parallel beams are focused on the optical
receiver by an imaging lens. The dimension of the effective emitting side depends on
the lens aperture and the focal length of the collimation lens. According to the following
analysis of the collimation scheme, this study will propose a more efficient lens system
with a compact dimension.
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Table 2. Parameter of the LED light source [26].

Model OSRAM, SFH 4715AS

Wavelength 850 nm
FWHM 30 nm

Radiant flux 1.53 W
Divergence angle ±60◦

Emitting panel area 1 × 1 mm2

The efficiency of the LED collimation scheme is analyzed according to Section 2.1. In
this scheme, the F-number of the collimation lens is found to be the only factor affecting the
efficiency. The theoretical limit for the lens aperture in air is F-number = 0.5. In Figure 3a,
the y-axis is the ratio of the surface power of different components to the LED radiant
flux. The orange dashed curve with triangle marks represents the lens system efficiency
(ηlens) according to Equation (2). Based on the front (black curve with square marks)
and back surface power (blue curve with circle marks) of the lens system in Figure 3a,
the transmissivity (T) and the divergence power rate (ηdiv) are calculated in Figure 3b
according to Equations (4) and (5).

Figure 3a shows that the lens system efficiency increases as the F-number of the
collimation lens decreases. This trend can be attributed to the ±60◦ LED divergence angle,
which causes a large divergence power outside the lens surface range. In Figure 3b, the
transmissivity of the lens system is relatively constant, ranging from approximately 80%
to 95%. However, the F-number = 0.5 collimation lens has the smallest divergence power,
indicating that it is the optimal choice for a high efficiency LED collimation scheme with
minimal divergence. This means the diameter of the collimation lens should be twice its
focal length.
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3. High Efficiency and Compact LED-OWPT System
3.1. Design and Experimental Setup

Due to the requirement of portability, the maximum lens aperture is limited to 100 mm
by referring typical portable devices. Considering the dimensions of most IoT devices,
the size of the solar cell is assumed to be up to 50 × 50 mm2. In addition, the initial
ideal transmission distance is set to 1 m. According to the collimation scheme in Figure 2,
LEDs and the corresponding collimation lens arrays are applied to improve the system
output while maintaining a small irradiation area. As the size of the imaging lens is fixed,
increasing the number of LEDs reduces the size of the collimator lens installed on each LED.
As a result, there is a trade-off between the system efficiency and the total output. Figure 4
shows the simulated relationship between the solar cell surface irradiation (Isur f ) and the
effective solar cell surface irradiation (ηsur f ) as LED numbers change. As in the analysis
in Section 2.2, all the collimation lenses satisfy the F-number = 0.5 in order to achieve the
optimal efficiency of the lens system.
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In Figure 4, as the number of LEDs increases, although the lens system efficiency (ηlens)
remains at the optimum, the size of the irradiation spot increases, resulting in a continuous
decrease in effective solar cell surface irradiation (ηsur f ). In order to achieve both high
efficiency and high output with less components for practical design, a four-LED-array
collimation scheme with corresponding collimation lenses is applied. Figure 5 shows the
proposed design in the Zemax simulation. The emitting side consists of four identical LEDs
(OSRAM SFH4715AS; 850 nm, 1.53 W), arranged in a square shape array with a side length
of 50 mm. By employing more LEDs in the optimal configuration, it is anticipated that the



Photonics 2023, 10, 824 6 of 12

output will be enhanced. However, the improvement over four-LED is relatively small,
despite the need for a complex configuration with a large number of components.
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The imaging lens is adapted to the aperture restrain (a = 100 × 100 mm2, f = 1000 mm).
As in the analysis in Section 2.2, the same four collimation lenses (d = 50 mm, f = 25 mm) are
placed at a distance of 25 mm away from the corresponding LEDs. The distance between
the collimation lens and the imaging lens is set to 2 mm. To minimize the weight of the
portable module, for a non-imaging system, Fresnel lenses made of plastic materials form
the lens system. In addition, the Fresnel lens can be manufactured cost-effectively with
F-number = 0.5 conditions. The expected performance will be analyzed in Section 3.2.

Figure 6 shows the experimental setup according to the simulation design. LEDs (OS-
RAM SFH4715AS) [26] with d = 20 mm submounts were screwed onto a 100 × 100 × 20 mm3

aluminum heat sink. Four LEDs were connected in a series for flowing the same current
to each LED and they were powered by a DC power source (MATSUSADA PRECISION,
PK20-20). The applied voltage and current were 13.6 V and 1.5 A, respectively.
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The lens system consists of four f = 25 mm Fresnel lenses (NTKJ, CF25) and one
f = 1000 mm Fresnel lens (NTKJ, CF1000). For accurate assembly, square lens shapes are
selected rather than circular shapes. The Fresnel patterns are formed up to the corners of a
square. All the lenses are manufactured with anti-reflection (AR) coatings on both surfaces
for NIR light. A 5-series connected GaAs solar cell with a total module size of 50 × 85 mm2

area is placed at 1000 mm from the imaging lens. The solar cell is rotated at an angle of
54◦ to the beam propagation direction, resulting in an effective surface irradiation area of
50 × 50 mm2.
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The experiment was conducted under fluorescent lighting only. Although the GaAs
solar cell also received a small amount of visible light from the fluorescent lamps, the solar
cell output by the room light was evaluated as zero in the applied experimental setup.

3.2. Simulation and Experiment Results

The simulation results of the light intensity distribution are shown in Figure 7a–c.
Figure 7a shows the system irradiation distribution at 1 m based on the incoherent light
feature of the LED. The x-axis and y-axis describe the coordinate values of a 100 × 100 mm2

detector. In Figure 7b, the 50 × 50 mm2 solar cell surface irradiation power Isur f is 2.69 W.
Figure 7c shows that the system irradiation power Isys at 1 m is 4.41 W. The simulated irra-
diation spot area at 1 m is 67 × 70 mm2. From Equation (2), the lens system efficiency ηlens
of the proposed design is 72.06%. Compared with the previous system ηlens = 39.71% [22],
it is improved by 1.8 times.
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In this experiment, as shown in Figure 7d, the irradiation spot area observed by
an infrared viewer (ELECTROPHYSICS, ElectroViewer 7215) was 68 × 77 mm2. The
grid board with a 10 mm scale grid was set perpendicular to the beam direction. The
increased irradiation aberration was caused by the misalignment between the LEDs and
the collimation lenses [27]. The electrical output was measured using an output monitor
(ADCMT, 6243 DC Monitor). Figure 8 shows the current-voltage (I-V) and power-voltage
(P-V) curves of the solar cell. As a result, the maximum power of the 50 × 50 mm2 effective
area GaAs solar cell at 1 m was 0.795 W. The open circuit voltage and the short circuit
current were 4.42 V and 0.29 A, respectively. The fill factor (FF) was 0.62.
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According to the measurements by the power meter (COHERENT, FieldMax II), the
50 × 50 mm2 solar cell surface received 2.41 W of irradiation power. At a distance of 1 m,
the system received a total irradiation of 4.29 W. The front and back surface irradiations
of the lens system were 5.46 W and 4.75 W, respectively. Based on these measurements,
the experimental efficiencies compared to the simulation values are shown in Table 3.
The experimental results are consistent with the simulation results. In the case of indoor
environment and air medium, the effects of absorption and scattering caused by the
transmission medium can be considered negligible within a range of several meters.

Table 3. Simulation (sim.) and experiment (exp.) efficiency.

Efficiency Sim. Result Exp. Result

Emitting side efficiency (ηemit) N/A 30%
Lens system efficiency (ηlens) 72.1% 70.1%
divergence power rate (ηdiv) 9.2% 10.8%
Lens system transmissivity (T) 90.6% 87%
effective surface irradiation (ηsur f ) 60.9% 56.2%

By applying the collimation lenses with F-number = 0.5, the beam leakage at the
incident side can be effectively reduced. This modification to the lens system leads to a
significant improvement in efficiency, which is approximately double that of the previous
report [22]. Thus, the proposed LED-OWPT is regarded as a highly efficient design, and a
promising candidate for practical applications.

3.3. Discussion of Effective Surface Irradiation

In the experimental setup of Section 3.1, the solar cell size is 50 × 85 mm2, which
consists of five pieces of 50 × 17 mm2 GaAs cells in series. According to the dimension of
most practical applications, this solar cell size is set as 50 × 50 mm2 along the optical path
by the oblique setting. From the analysis of Equation (3), increasing the solar cell size or
decreasing the irradiation spot size can improve the system output. Here, we will discuss
the effective surface irradiation (ηsur f ) on the receiving side.

For a single-chip solar cell, whether it is a single-junction or multi-junction, the system
irradiation area can be minimized. The ideal irradiation spot can be much smaller than
the solar cell itself. However, in the case of a series-connected solar cell, it is necessary to
ensure that the irradiation area covers each cell in the series. Otherwise, the output of the
solar cell will be close to zero, because some pieces of the cells outside the irradiation area
are not conductive [28].

Figure 9a shows the simulated incoherent irradiation power at 1 m using the single
LED collimation configuration in Figure 2. The x and y axes represent the coordinates of an



Photonics 2023, 10, 824 9 of 12

80 × 80 mm2 detector, while the z-axis represents the irradiation power corresponding to
each coordinate. For a square shaped solar cell, the side length is assumed to range from
0 to 80 mm at a distance of 1 m. Figure 9b shows the solar cell surface irradiation, where
the x-axis is the ratio of the side length of the solar cell to the system irradiation area, and
the y-axis is the effective surface irradiation (ηsur f ).

Photonics 2023, 10, x FOR PEER REVIEW 9 of 13 
 

 

For a single-chip solar cell, whether it is a single-junction or multi-junction, the sys-
tem irradiation area can be minimized. The ideal irradiation spot can be much smaller 
than the solar cell itself. However, in the case of a series-connected solar cell, it is necessary 
to ensure that the irradiation area covers each cell in the series. Otherwise, the output of 
the solar cell will be close to zero, because some pieces of the cells outside the irradiation 
area are not conductive [28]. 

Figure 9a shows the simulated incoherent irradiation power at 1 m using the single 
LED collimation configuration in Figure 2. The x and y axes represent the coordinates of 
an 80 × 80 mm2 detector, while the z-axis represents the irradiation power corresponding 
to each coordinate. For a square shaped solar cell, the side length is assumed to range from 
0 to 80 mm at a distance of 1 m. Figure 9b shows the solar cell surface irradiation, where 
the x-axis is the ratio of the side length of the solar cell to the system irradiation area, and 
the y-axis is the effective surface irradiation (𝜂 ). 

  
(a) (b) 

Figure 9. Effective surface irradiation: (a) system irradiation at 1 m; and (b) simulation result. The 
square red mark represents the experimental result by the configuration in Section 3.1. 

The simulation results show that the effective surface irradiation strongly depends 
on the side length ratio between the irradiant spot and the solar cell. The relationship be-
tween the effective surface irradiation and the side length ratio is close to direct propor-
tion. The edge irradiance of 1/10 of the center peak is considered the spot border. When 
the assumed receiver size is the same as this, there are still a few stray lights out of range, 
leading to a result of 97%. For illustration, the square red mark shows the experimental 
situation in Section 3.1. When the side length of the solar cell is extended to 80 mm (1.6 
times larger than in this experiment), the effective surface irradiation (𝜂 ) is around 
94%. 

These results provide a scheme for optimizing the OWPT receiving side, particularly 
in terms of determining the appropriate size of the irradiation area relative to the solar cell 
size. 

4. Integrated Module for Portable Power Supply 
4.1. Demonstration of Portable Power Source Module 

In Figure 6, the light source system was installed on the optical stage. In this section, 
we integrate the emitting side, consisting of a heat sink, LEDs, and lenses, into a portable 
module. This integration is shown in Figure 10. In principle, the optical characteristics and 
optical wireless power supply characteristics of this module are the same as those in Sec-
tion 3. However, because it is susceptible to equipment manufacturing errors, detailed 
power supply characteristics will be optimized and evaluated in the future. Other practi-
cal features of compact modularization are discussed here. 

Figure 9. Effective surface irradiation: (a) system irradiation at 1 m; and (b) simulation result. The
square red mark represents the experimental result by the configuration in Section 3.1.

The simulation results show that the effective surface irradiation strongly depends on
the side length ratio between the irradiant spot and the solar cell. The relationship between
the effective surface irradiation and the side length ratio is close to direct proportion. The
edge irradiance of 1/10 of the center peak is considered the spot border. When the assumed
receiver size is the same as this, there are still a few stray lights out of range, leading to a
result of 97%. For illustration, the square red mark shows the experimental situation in
Section 3.1. When the side length of the solar cell is extended to 80 mm (1.6 times larger
than in this experiment), the effective surface irradiation (ηsur f ) is around 94%.

These results provide a scheme for optimizing the OWPT receiving side, particularly
in terms of determining the appropriate size of the irradiation area relative to the solar
cell size.

4. Integrated Module for Portable Power Supply
4.1. Demonstration of Portable Power Source Module

In Figure 6, the light source system was installed on the optical stage. In this section,
we integrate the emitting side, consisting of a heat sink, LEDs, and lenses, into a portable
module. This integration is shown in Figure 10. In principle, the optical characteristics
and optical wireless power supply characteristics of this module are the same as those in
Section 3. However, because it is susceptible to equipment manufacturing errors, detailed
power supply characteristics will be optimized and evaluated in the future. Other practical
features of compact modularization are discussed here.

The arrangement is the same as the design shown in Figure 5. The box frame was
designed using a 3D modeling software (SketchUp Pro; Trimble Ltd. USA) and was
fabricated using an LCD-based stereolithography 3D printer (Flashforge Foto 8.9 s) with
Photopolymer resin material. This integrated device has a relatively small dimension and
light weight. Figure 10b shows that the overall dimensions are 120 × 114 × 61 mm3. The
heat sink with four LEDs weighs 233.4 g, and the weight of all the Fresnel lenses is 56.8 g.
The total weight of the integrated light power source device is 407.1 g. The dimensions
and weight are confined within an acceptable range, comparable to those of relatively large
flashlights. Figure 10c shows the back and side holes for fin cooling. Due to its compact
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size and light weight, this power source can be conveniently carried by humans or robots
for temporary power supply.

Photonics 2023, 10, x FOR PEER REVIEW 10 of 13 
 

 

 

   
(a) (b) (c) 

Figure 10. Portable power source module; (a) internal; (b) dimension; and (c) back. 

The arrangement is the same as the design shown in Figure 5. The box frame was 
designed using a 3D modeling software (SketchUp Pro; Trimble Ltd. USA) and was fabri-
cated using an LCD-based stereolithography 3D printer (Flashforge Foto 8.9 s) with Pho-
topolymer resin material. This integrated device has a relatively small dimension and light 
weight. Figure 10b shows that the overall dimensions are 120 × 114 × 61 mm3. The heat 
sink with four LEDs weighs 233.4 g, and the weight of all the Fresnel lenses is 56.8 g. The 
total weight of the integrated light power source device is 407.1 g. The dimensions and 
weight are confined within an acceptable range, comparable to those of relatively large 
flashlights. Figure 10c shows the back and side holes for fin cooling. Due to its compact 
size and light weight, this power source can be conveniently carried by humans or robots 
for temporary power supply. 

4.2. Thermal Performance of Portable Power Source Module 
The injected electrical power of an LED is not only converted into light energy but 

also results in some heat loss. In general, the electro-light conversion efficiency 𝜂  of a 
high power LED is about 15–40% [29,30]. In the case of the proposed light source module, 
the injected electric power 𝑃  was 20.4 W, and the total radiant flux 𝛷 of four-LEDs was 
measured as 6.12 W. The electro-light conversion efficiency 𝜂  was 30% for the exper-
imental setup. As a result, about 14.3 W of heat was generated based on the above values. 

For the portable module, the thermal performance was measured using a thermal 
shot camera (Avio Infrared Ltd., F30W). The integrated system was operated for 30 min 
under constant ambient temperature of 24 °C with the airflow of the room air conditioner. 
No fans were directed towards to the heat sink. Figure 11 shows the thermal images and 
the temperatures at the position of the cross mark. In the integrated module, the temper-
ature distribution was non-uniform, where the LED chip performed the highest tempera-
tures, reaching up to 68.5 °C. Figure 11a shows that the temperature of the aluminum heat 
sink (237 W·m−1K−1) [31] was 45.2 °C. Although the thermal conductivity of the resin frame 
limited the heat dissipation, the temperature of the resin frame surface (0.5 W·m−1K−1) [32] 
was about 25–35 °C, as shown in Figure 11b,c. The highest temperature that occurred clos-
est to the LED was recorded as 36.3 °C. 

Figure 10. Portable power source module; (a) internal; (b) dimension; and (c) back.

4.2. Thermal Performance of Portable Power Source Module

The injected electrical power of an LED is not only converted into light energy but
also results in some heat loss. In general, the electro-light conversion efficiency ηemit
of a high power LED is about 15–40% [29,30]. In the case of the proposed light source
module, the injected electric power Pin was 20.4 W, and the total radiant flux Φ of four-
LEDs was measured as 6.12 W. The electro-light conversion efficiency ηemit was 30% for
the experimental setup. As a result, about 14.3 W of heat was generated based on the
above values.

For the portable module, the thermal performance was measured using a thermal shot
camera (Avio Infrared Ltd., F30W). The integrated system was operated for 30 min under
constant ambient temperature of 24 ◦C with the airflow of the room air conditioner. No
fans were directed towards to the heat sink. Figure 11 shows the thermal images and the
temperatures at the position of the cross mark. In the integrated module, the temperature
distribution was non-uniform, where the LED chip performed the highest temperatures,
reaching up to 68.5 ◦C. Figure 11a shows that the temperature of the aluminum heat sink
(237 W·m−1K−1) [31] was 45.2 ◦C. Although the thermal conductivity of the resin frame
limited the heat dissipation, the temperature of the resin frame surface (0.5 W·m−1K−1) [32]
was about 25–35 ◦C, as shown in Figure 11b,c. The highest temperature that occurred
closest to the LED was recorded as 36.3 ◦C.

For this integrated module, the aluminum heat sink and the heat dissipation holes are
sufficient for thermal design. The surface temperatures remain within acceptable limits
as a portable device, and it does not cause the attenuation of LED radiation. For further
thermal optimization, some customized cooling systems need to be considered, such as
higher performance heat sink designs or additional small fans.
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5. Conclusions

In this research, the proposed LED-OWPT provides a potential solution for improving
the efficiency and portability of wireless power transmission systems. In this experiment,
70% lens system efficiency is achieved by the four-LED-array collimation scheme. The
experimental result also shows 0.8 W electrical output from the 50 × 50 mm2 GaAs solar
cell at 1 m transmission distance. The emitting side is integrated into a portable module
with a compact dimension of 120 × 114 × 61 mm3 and a weight of 407 g. In addition,
the thermal performances have been tested, and the results prove the feasibility of the
integrated configuration as a practical power source. The effective surface irradiation is
discussed according to the relationship between the irradiation area and the solar cell size.

Overall, the LED-OWPT in this research provides a promising method with high
efficiency and portability. The system has the potential to power IoT terminals for temporary
and remote supplements. Some practical functions will be extended in further research.
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