Suppressing the Zero-Frequency Components in Single Quantitative Phase Imaging by Filtering the Low-Frequency Intrinsic Mode Function Components
Abstract
:1. Introduction
2. Method of this Paper
- Suppose that is the hologram image to be analyzed. Firstly, find the maxima and minima of f(x, y) and construct the maximum surface and the minimum surface by interpolation. The effect of this step is to capture the dominant oscillatory patterns present in the hologram. The mean value of the upper and lower envelope surfaces is
- Take as the new input and repeat the above process times. Until Equation (4) is satisfied, the cycle can stop, where SD is generally between 0.1 and 0.5. is generally 0.2.
- is denoted as the remaining image with the high-frequency part removed. The effect of this step is to remove the contribution of the extracted IMF from the hologram, focusing on the residual information.
- Repeat the above process with as the new image to be analyzed, and then the second IMF can be obtained. The effect of this step is to capture additional oscillatory modes of decreasing frequency from the hologram, revealing progressively lower-frequency components.
- After times of the above process, when and are less than the predetermined error or is a monotone function, the IMF cannot be extracted from the original . The original image can be shown in Equation (6). The effect of this step is to provide a representation of the hologram as a combination of different frequency components.
3. Experiment and Results Analysis
3.1. ZFC Suppression in QPI
3.2. ZFC Suppression Comparison Experiment in QPI
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Popescu, G. Quantitative Phase Imaging of Cells and Tissues; McGraw-Hill Education: New York, NY, USA, 2011. [Google Scholar]
- Trusiak, M.; Mico, V.; Garcia, J.; Patorski, K. Quantitative phase imaging by single-shot Hilbert–Huang phase microscopy. Opt. Lett. 2016, 41, 4344–4347. [Google Scholar] [CrossRef] [PubMed]
- Sitthisang, S.; Boonruangkan, J.; Leong, M.F.; Chian, K.S.; Kim, Y.J. Quantitative Phase Imaging to Study the Effect of Sodium Dodecyl Surfactant on Adherent L929 Fibroblasts on Tissue Culture Plates. Photonics 2021, 8, 508. [Google Scholar] [CrossRef]
- Eldridge, W.J.; Sheinfeld, A.; Rinehart, M.T.; Wax, A. Imaging deformation of adherent cells due to shear stress using quantitative phase imaging. Opt. Lett. 2016, 41, 352–355. [Google Scholar] [CrossRef] [PubMed]
- Ding, Y.; Peng, K.; Yu, M.; Lu, L.; Zhao, K. Fringe order correction for the absolute phase recovered by two selected spatial frequency fringe projections in fringe projection profilometry. Rev. Sci. Instrum. 2017, 88, 083104. [Google Scholar] [CrossRef] [PubMed]
- Brito, I.V.; Gesualdi, M.R.R.; Muramatsu, M.; Ricardo, J. Phase-shifting Real-time Holographic Microscopy applied in micro-structures surface analysis. J. Phys. Conf. Ser. 2011, 274, 012072. [Google Scholar] [CrossRef]
- Zhang, M.L.; Ma, Y.; Wang, Y.; Wen, K.; Zheng, J.; Liu, L.; Gao, P. Polarization grating based on diffraction phase microscopy for quantitative phase imaging of paramecia. Opt. Express 2020, 28, 29775–79787. [Google Scholar] [CrossRef]
- Zhang, M.; Liu, J.; Dou, J.; Zhang, J.; Zhang, L.; Di, J.; Zhao, J. Simultaneous measurement of near-water-film air temperature and humidity fields based on dual-wavelength digital holographic interferometry. Opt. Express 2022, 30, 17278–17289. [Google Scholar] [CrossRef]
- Luo, Z.P.; Ma, J.S.; Su, P.; Cao, L.C. Digital holographic phase imaging based on phase iteratively enhanced compressive sensing. Opt. Lett. 2019, 44, 1395–1398. [Google Scholar] [CrossRef]
- Zhang, X.; Meng, X.; Yin, Y.; Yang, X.; Wang, Y.; Li, X.; Peng, X.; He, W.; Dong, G.; Chen, H. Two-level image authentication by two-step phase-shifting interferometry and compressive sensing. Opt. Lasers Eng. 2018, 100, 118–123. [Google Scholar] [CrossRef]
- Reddy, B.L.; Ramachandran, P.; Nelleri, A. Compressive complex wave retrieval from a single off-axis digital Fresnel hologram for quantitative phase imaging and microlens characterization. Opt. Commun. 2021, 478, 126371. [Google Scholar]
- Di, J.L.; Wu, J.; Wang, K.Q.; Tang, J.; Li, Y.; Zhao, J.L. Quantitative phase imaging using deep learning-based holographic microscope. Front. Phys. 2021, 9, 651313. [Google Scholar] [CrossRef]
- Chen, N.; Wang, C.; Heidrich, W. Holographic 3D particle imaging with model-based deep network. IEEE Trans. Comput. Imaging 2021, 7, 288–296. [Google Scholar] [CrossRef]
- Rivenson, Y.; Liu, T.R.; Wei, Z.S.; Zhang, Y.B.; Haan, K.D.; Ozcan, A. PhaseStain: The digital staining of label-free quantitative phase microscopy images using deep learning. Light Sci. Appl. 2019, 8, 23. [Google Scholar] [CrossRef] [Green Version]
- Zhang, Y.; Huang, Z.; Jin, S.; Cao, L. Autofocusing of in-line holography based on compressive sensing. Opt. Lasers Eng. 2021, 146, 106678. [Google Scholar] [CrossRef]
- Ren, Z.B.; Lam, E.Y.; Zhao, J.L. Acceleration of autofocusing with improved edge extraction using structure tensor and Schatten norm. Opt. Express 2020, 28, 14712–14728. [Google Scholar] [CrossRef] [PubMed]
- Guo, C.F.; Bian, Z.C.; Alhudaithy, S.; Jiang, S.W.; Tomizawa, Y.; Song, P.M.; Wang, T.B.; Shao, X.P. Brightfield, fluorescence, and phase-contrast whole slide imaging via dual-LED autofocusing. Biomed. Opt. Express 2021, 12, 4651–4660. [Google Scholar] [CrossRef]
- Li, R.; Cao, L. Complex wavefront sensing based on coherent diffraction imaging using vortex modulation. Sci. Rep. 2021, 11, 9019. [Google Scholar] [CrossRef]
- Ionel, L.; Ursescu, D.; Neagu, L.; Zamfirescu, M. On-site holographic interference method for fast surface topology measurements and reconstruction. Phys. Scr. 2015, 90, 065502. [Google Scholar] [CrossRef]
- Liu, X.; Long, J.; Ding, Y.; Hu, Y.; Du, Z.; Xu, B.; Deng, D. Measuring the refractive index of scintillation crystal with a Mach-Zehnder interferometer. Opt. Contin. 2022, 1, 909–918. [Google Scholar] [CrossRef]
- Deng, D.; Qu, W.; He, W.; Liu, X.; Peng, X. Phase aberration compensation for digital holographic microscopy based on geometrical transformations. J. Opt. 2019, 21, 085702. [Google Scholar] [CrossRef]
- Singh, M.; Khare, K. Accurate efficient carrier estimation for single-shot digital holographic imaging. Opt. Lett. 2016, 41, 4871–4874. [Google Scholar] [CrossRef]
- Liu, Y.; Wang, Z.; Li, J.S.; Gao, J.M.; Huang, J.H. Total aberrations compensation for misalignment of telecentric arrangement in digital holographic microscopy. Opt. Eng. 2014, 53, 112307. [Google Scholar] [CrossRef]
- Cuche, E.; Marquet, P.; Depeursinge, C. Spatial filtering for zero-order and twin-image elimination in digital off-axis holography. Appl. Opt. 2000, 39, 4070–4075. [Google Scholar] [CrossRef] [PubMed]
- Pasko, S.; Jozwicki, R. Improvement methods of reconstruction process in digital holography. Opto-Electron. Rev. 2003, 11, 203–209. [Google Scholar]
- Guo, C.S.; Wang, W.T.; Li, J.; Gao, T.J. Elimination of zero-order diffraction spot in hologram digital reconstruction (in Chinese). Acta Opt. Sin. 1998, 08, 114–117. [Google Scholar]
- Halaq, H.; Takakura, Y.; Vukicevic, D. Zero order elimination for digital holograms: Study of setup dependent methods. In Proceedings of the 2019 International Conference on Intelligent Systems and Advanced Computing Sciences (ISACS), Taza, Morocco, 26–27 December 2019. [Google Scholar]
- Chen, G.-L.; Lin, C.-Y.; Kuo, M.-K.; Chang, C.-C. Numerical suppression of zero-order image in digital holography. Opt. Express 2007, 15, 8851–8856. [Google Scholar] [CrossRef]
- Zeng, L.; Gu, J.H.; Zhou, H. Application of wavelet transform to eliminate zero-order image of digital holography. J. Soochow Univ. (Nat. Sci. Ed.) 2010, 26, 56–60. [Google Scholar]
- Cho, C.; Choi, B.; Kang, H.; Lee, S. Laplace operation-based DC noise reduction in digital holography. IEEE Photonics Technol. Lett. 2013, 25, 1188–1191. [Google Scholar] [CrossRef]
- Pavillon, N.; Arfire, C.; Bergoënd, I.; Depeursinge, C. Iterative method for zero-order suppression in off-axis digital holography. Opt. Express 2010, 18, 15318–15331. [Google Scholar] [CrossRef] [Green Version]
- Khare, K.; Ali PT, S.; Joseph, J. Single shot high resolution digital holography. Opt. Express 2013, 21, 2581–2591. [Google Scholar] [CrossRef]
- Baek, Y.S.; Lee, K.R.; Shin, S.; Park, Y. Kramers–Kronig holographic imaging for high-space-bandwidth product. Optica 2019, 6, 45–51. [Google Scholar] [CrossRef]
- Shen, Q.; Sun, J.; Fan, Y.; Li, Z.; Gao, P.; Chen, Q.; Zuo, C. High-throughput artifact-free slightly off-axis holographic imaging based on Fourier ptychographic reconstruction. Front. Photonics 2022, 3, 936561. [Google Scholar] [CrossRef]
- Zhan, X.; Gan, C.; Ding, Y.; Hu, Y.; Xu, B.; Deng, D.; Liao, S.; Xi, J. Speckle Noise Suppression Based on Empirical Mode Decomposition and Improved Anisotropic Diffusion Equation. Photonics 2022, 9, 611. [Google Scholar] [CrossRef]
- Dong, J.; Yetisen, A.K.; Dong, X.; Brändle, F.; Jakobi, M.; Liu, Z.; Salazar, F.; Koch, A.W. Low-pass filtering compensation in common-path digital holographic microscopy. Appl. Phys. Lett. 2020, 117, 121105. [Google Scholar] [CrossRef]
- Gabor, D. A new microscopic principle. Nature 1948, 161, 777–778. [Google Scholar] [CrossRef] [Green Version]
- Huang, N.E.; Shen, Z.; Long, S.R.; Wu, M.C.; Shih, H.H.; Zheng, Q.; Yen, N.C.; Chi, C.; Liu, H.H. The empirical mode decomposition and the Hilbert spectrum for nonlinear and non-stationary time series analysis. Proc. Math. Phys. Eng. Sci. 1971, 454, 903–995. [Google Scholar] [CrossRef]
- Nunes, J.C.; Bouaoune, Y.; Delechelle, E.; Niang, O.; Bunel, P. Image analysis by bidimensional empirical mode decomposition. Image Vis. Comput. 2003, 21, 1019–1026. [Google Scholar] [CrossRef]
- Chen, J.; Wang, L.; Wang, P.; Che, A. Failure mechanism investigation on loess–mudstone landslides based on the Hilbert–Huang transform method using a large-scale shaking table test. Eng. Geol. 2022, 302, 106630. [Google Scholar] [CrossRef]
- Svetlakov, M.; Kovalev, I.; Konev, A.; Kostyuchenko, E.; Mitsel, A. Representation Learning for EEG-Based Biometrics Using Hilbert–Huang Transform. Computers 2022, 11, 47. [Google Scholar] [CrossRef]
- Anand, A.; Chhaniwal, V.K.; Javidi, B. Real-Time Digital Holographic Microscopy for Phase Contrast 3D Imaging of Dynamic Phenomena. J. Disp. Technol. 2010, 6, 500–505. [Google Scholar] [CrossRef]
- Wang, F.; Bian, Y.M.; Wang, H.C.; Lyu, M.; Pedrini, G.; Osten, W.; Barbastathis, G.; Situ, G.H. Phase imaging with an untrained neural network. Light Sci. Appl. 2020, 9, 77. [Google Scholar] [CrossRef] [PubMed]
- Huang, Z.Z.; Cao, L.C. Bicubic interpolation and extrapolation iteration method for high resolution digital holographic reconstruction. Opt. Lasers Eng. 2020, 130, 106090. [Google Scholar] [CrossRef]
- Ghiglia, D.C.; Romero, L.A. Robust two-dimensional weighted and unweighted phase unwrapping that uses fast transforms and iterative methods. J. Opt. Soc. Am. A 1994, 11, 107–117. [Google Scholar] [CrossRef]
- Kong, I.B.; Kim, S.W. General algorithm of phase-shifting interferometry by iterative least-squares fitting. Opt. Eng. 1995, 34, 183–188. [Google Scholar] [CrossRef]
- Gao, Y.F.; Guo, H.J.; Song, X.F.; Yu, M.J.; Wang, H.Y. Digital holographic phase reconstruction technology based on Hilbert transform. Opt. Laser Technol. 2015, 39, 266–269. [Google Scholar]
Traditional Fourier Filtering | The Proposed Method | Haar Wavelet Transform | Laplace Operator | |
---|---|---|---|---|
PSNR | 16.35 | 20.58 | 12.77 | 13.05 |
SSIM | 0.72 | 0.77 | 0.52 | 0.47 |
Traditional Fourier Filtering | The Proposed Method | Haar Wavelet Transform | Laplace Operator | |
---|---|---|---|---|
PSNR | 17.05 | 19.96 | 14.78 | 14.95 |
SSIM | 0.76 | 0.79 | 0.64 | 0.62 |
Traditional Fourier Filtering | The Proposed Method | Haar Wavelet Transform | Laplace Operator | |
---|---|---|---|---|
PSNR | 29.97 | 30.28 | 25.53 | 27.92 |
SSIM | 0.86 | 0.89 | 0.71 | 0.79 |
Traditional Fourier Filtering | The Proposed Method | Haar Wavelet Transform | Laplace Operator | |
---|---|---|---|---|
PSNR | 13.69 | 14.05 | 11.45 | 10.32 |
SSIM | 0.71 | 0.78 | 0.58 | 0.66 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Long, J.; Meng, C.; Ding, Y.; Xi, J. Suppressing the Zero-Frequency Components in Single Quantitative Phase Imaging by Filtering the Low-Frequency Intrinsic Mode Function Components. Photonics 2023, 10, 790. https://doi.org/10.3390/photonics10070790
Long J, Meng C, Ding Y, Xi J. Suppressing the Zero-Frequency Components in Single Quantitative Phase Imaging by Filtering the Low-Frequency Intrinsic Mode Function Components. Photonics. 2023; 10(7):790. https://doi.org/10.3390/photonics10070790
Chicago/Turabian StyleLong, Jiale, Chuisong Meng, Yi Ding, and Jiangtao Xi. 2023. "Suppressing the Zero-Frequency Components in Single Quantitative Phase Imaging by Filtering the Low-Frequency Intrinsic Mode Function Components" Photonics 10, no. 7: 790. https://doi.org/10.3390/photonics10070790
APA StyleLong, J., Meng, C., Ding, Y., & Xi, J. (2023). Suppressing the Zero-Frequency Components in Single Quantitative Phase Imaging by Filtering the Low-Frequency Intrinsic Mode Function Components. Photonics, 10(7), 790. https://doi.org/10.3390/photonics10070790