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Abstract: In recent years, dynamically tunable structural color has attracted great interest. Here, we
introduce the guided-mode resonance (GMR) filter and the phase-change material Sb2S3 to design
a reflective optical metasurface to produce tunable structural color, in which the combination of
the GMR filter, with narrow resonant wavelength, and the Sb2S3, with a much larger bandgap and
higher refractive index, helps to produce high-quality tunable structural color. The simulation results
indicate that through the phase transition between the amorphous and crystalline states of Sb2S3,
the proposed metasurface can generate tunable structural color that can be perceived by the naked
eye. Furthermore, the metasurface can sensitively sense environmental changes through changes in
structural color. This work provides a new method for realizing dynamically tunable structural color,
and paves the way for the application of controllable structural color in dynamic displays, optical
stealth, colorimetric sensing, and other fields.
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1. Introduction

Light, which carryies a large amount of information, enters the eyes through the pupils,
helping people to understand the colorful world. One of the most intuitive manifestations
of this information is color. Human beings have studied and applied color for thousands
of years. Currently, dyes and pigments still play a leading role in our lives as coloring
materials. The common colors in nature are mainly divided into pigment colors and
structural colors, according to their production mechanism. The oldest scientific description
of structural color is found in ‘Micrographia’, written by Hooke, in 1665 [1]. In the past
30 years, structural color has attracted great attention as a promising alternative to dye-
and pigment-based color [2]. Structural color is obtained by the scattering, diffraction, and
interference of light from periodic micro-nanostructures [3]. Therefore, it has the advantages
of large gamut, high saturation, high-resolution, and environmental friendliness, among
others [4]. Halas et al. designed a tunable visible color-changing metasurface, which
can be used as both a strain sensor and a localized surface-plasmon-resonance refractive-
index sensor, with remarkable color tenability [5]. Lin et al. experimentally demonstrated
the refractive-index-sensing property of a metamaterial grating device integrated with a
polydimethylsiloxane microfluidic chip. The color changes of the metamaterial grating
device induced by the refractive index in an ambient light environment were clear to the
naked eye [6]. Based on previous research, we can conclude that structural colors mainly
include metal-metasurface structural colors and all-dielectric metasurface structural colors
from the perspective of material composition [4–9]. Metal-metasurface structural color
has subwavelength resolution but suffers from low intensity and small gamut because
of the inherent ohmic loss of metal. All-dielectric metasurface structural color has a high
level of brightness, but its resolution is not as high as that of metal metasurfaces. In
addition to the optimization of parameters, dynamic adjustment is also one of the key
factors in determining the practicality of structural color [10]. With the further development
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of micro-nano-processing technology, dynamically tunable structural color will become
increasingly possible.

One way to achieve tunable structural color is to turn individual elements on or off
with predetermined colors. For example, Chen et al. proposed a polarization-sensitive
color filter based on a titanium-oxide metasurface and realized hue- and saturation-tuned
color [11], but it was difficult to realize the miniaturization of the device with the design
strategy proposed. Another way to realize tunable structural color is to directly change
the refractive index of the surrounding environment of the metasurface by controlling the
state or component of the material. This is an ideal method with which to obtain dynamic
structural colors. Duan et al. designed a magnesium-based pixelated Fabry–Pérot cavity
to generate tunable color displays [12]. The hydrogenation/dehydrogenation kinetics of
magnesium cause dynamic changes in FP resonance, resulting in significant color alter-
ations. However, the color-change process requires a long response time, which affects its
practical application. Shang et al. designed a microfluidic reconfigurable metasurface and
realized real-time adjustable structural color [13]. However, the manufacturing process is
complicated. In the past decade, an increasing number of studies have been performed on
the use of phase-change materials (PCMs) in dynamically tunable structural color [14,15].
Due to their narrow bandwidths, GMR filters have great potential for realizing the high
saturation of structural color and improving the sensitivity of devices to refractive-index
changes. In this study, we attempted to integrate a GMR filter and a phase-change material,
Sb2S3, into the metasurface to realize dynamically tunable structural color. We present the
design of an optical metasurface and the investigation of the optical characteristics of the
GMR filter in Section 2. We obtained three primary colors by setting the appropriate struc-
tural parameters, and took the red color as an example to investigate dynamically tunable
structural color, as reported in Section 3. We found that when Sb2S3 is in the amorphous
state, the chromaticity coordinates are (0.5920, 0.3238) and, when Sb2S3 is in the crystalline
state, the chromaticity coordinates are (0.5692, 0.3809). The linear distance between the
two chromaticity coordinates is approximately 0.06. It can be concluded that changing
the phase state of the material Sb2S3 can obtain tunable structural color with noticeable
changes that can be perceived by the naked eye, as shown in the CIE 1931 chromaticity
diagram. Finally, we defined the sensing sensitivity s of the metasurface and calculated the
maximum and minimum values of the sensing sensitivity s when the refractive index of the
surrounding environment changed by 0.1, according to whether the Sb2S3 is amorphous or
crystalline. The results show that the designed metasurface can sensitively display changes
in environmental media, similar to a colorimeter.

2. Design of Metasurface
2.1. Main Structure

The transition of PCMs between different states can change their refractive indices,
thereby altering the optical response characteristics. Hence, we can use this feature of
PCMs to realize dynamic tuning of structural color. Based on previous research results, we
attempted to use Sb2S3 in a GMR structure to achieve dynamically tunable structural color.
The schematic diagram of tunable0structural-color metasurface with the GMR grating is
shown in Figure 1. In our designed structure, both the grating layer and waveguide layer
are composed of Si3N4, and have the same refractive index, n2 = n3. Furthermore, p is the
period of grating, h denotes the height of grating layer, and h3, h4, and h5 represent the
thickness of waveguide layer, substrate, and phase-change material, respectively.
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When a beam of light is incident on the grating surface, there are two polarization 
states of the light, which transmits through the one-dimensional (1D) grating. According 
to [21], the light is transmitted only when the magnetic field, H, is parallel to the slits. As 
a consequence, only the incident wave with TM-polarized mode can excite the GMR for 
1D grating. When the TM-polarized light in y–z plane is incident on the grating surface 
at any angle, the diffraction wave with certain order through the grating resonates with 
the guided mode of the waveguide layer, provided the refractive indices of the filter 
material meet the following condition: 
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Figure 1. The schematic diagram of reflective tunable-structural-color metasurface.

2.2. Optical Property of GMR Filter

The GMR represents a kind of phenomenon observed in waveguide-grating structures,
where the intensity of diffractive field undergoes a rapid variation within small parame-
ter ranges when an incident wave is coupled into a leaky waveguide mode [16,17]. The
GMR filter is a unique kind of filter, and the full width half maximum (FWHM) of reflec-
tion/transmission spectrum can reach below 5 nm [18–20]. The reflectance of resonance
peak is higher than 95%, and the sideband reflectance can be made lower than 5% [18].
Therefore, it is theoretically possible to obtain high-purity filtered light by using a GMR
filter. In our work, we attempted to use the metasurface structure containing GMR filter
with different parameters to generate the three primary colors. The schematic diagram of
the side view (a) and the top view (b) of the optical metasurface obtaining GMR filter is
shown in Figure 2. The region L2 is the grating layer with refractive index n2, the region
L3 is the waveguide layer with refractive index n3, the cover layer L1 is the environmental
medium with refractive index n1, and the lower layer L4 is the substrate with refractive
index n4.
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Figure 2. The schematic diagram of the side view (a) and the top view (b) of GMR filter.

When a beam of light is incident on the grating surface, there are two polarization
states of the light, which transmits through the one-dimensional (1D) grating. According
to [21], the light is transmitted only when the magnetic field, H, is parallel to the slits. As
a consequence, only the incident wave with TM-polarized mode can excite the GMR for
1D grating. When the TM-polarized light in y–z plane is incident on the grating surface at
any angle, the diffraction wave with certain order through the grating resonates with the
guided mode of the waveguide layer, provided the refractive indices of the filter material
meet the following condition:

max(n1, n4) < ne f f < n3, (1)

where ne f f =
√

f n2
2 + (1 − f )n2

1 is the effective refractive index of the grating, and f is the
duty cycle. The coupled wave propagates along the y direction in the waveguide layer, and
it meets the relation as follows [22]:

k(n)y = k(0)y ± kp, (2)



Photonics 2023, 10, 752 4 of 13

where k(0)y = 2πn1 sin(θi)/λi is the component of the incident wave vector ki parallel to the

x–y plane, kp = 2πn/p is the wave vector regulated by the periodic grating structure, k(n)y
is the wave vector of n-order diffraction wave, λi is the wavelength in free-space, θi is the
incident angle, p is the period of the grating, and n ≥ 1 is a positive integer representing the
diffraction order. When the wave vector of the diffraction wave matches the counterpart
of the guided-mode, the resonance occurs and the light field in the waveguide layer
is redistributed. As we know, the first-order diffraction wave can excite the strongest
resonance. Therefore, we consider the coupling between the first-order diffraction wave
and the guided mode, and the resonance wavelength is denoted as λR. Using the equation:

k(1)y = 2π/λR = k(0)y ± 2π

p
, (3)

we can obtain the resonant wavelength λR, which is the wavelength of the guided mode
propagating in the waveguide layer. From Equation (3), we also know that the wavelength
of GMR can be adjusted by changing the grating period p.

In order to obtain high-quality color with GMR filter, we investigated a large number
of previous research results. The investigation found that the materials most frequently
used in the grating layer of the GMR structure are SiO2 and Si3N4, and the materials most
frequently used in the waveguide layer are Si3N4 and HfO2. In our work, in order to
facilitate the device preparation, we used the same material, Si3N4, in the grating layer
and the waveguide layer, as in [23]. Furthermore, we used finite-difference time-domain
(FDTD) solutions to analyze the optical property of the GMR filter. A series of reflection
spectra were obtained by changing the period p of the grating in the simulation, as shown
in Figure 3. The maximum value of all reflection spectra was above 98%. The FWHM of the
reflection spectrum was about 6.5 nm to 8.5 nm, and increased slighly with the red shift of
the wave peak. That is to say, when the period p was 251 nm, the FWHM was 6.5 nm, and
when the period p was 395 nm, the FWHM was 8.5 nm. We also found that when the period
p increased by about 35 nm, the resonance peak shifted red by about 50 nm. Therefore, it
can be concluded that the GMR filter has very high reflectivity throughout the visible light
band from 400 nm to 700 nm.
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From the electric field distributions, we found that the strong electric energy was
confined in the waveguide layer. Through further simulation, we found that the incident
light was mainly coupled into the metasurface through the ridges of the grating and
formed resonance in the waveguide layer. The electric and magnetic field distributions
at the resonance wavelength in the GMR filter are shown in Figure 4. The waveguide
layer and the ridge of the grating are marked with white dashed lines in the figures, which
verify that the GMR occurred and the coupled wave propagated along the y direction in the
waveguide layer. The changes in parameters, such as the grating period p and the thickness
of waveguide layer h3, had a significant impact on GMR.
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2.3. Optical Properties of Sb2S3

The use of PCMs has attracted significant interest from scholars researching structural
color because of its unique optical properties [24]. Optical or electrical pulses and mechan-
ical stress can be utilized to switch materials between amorphous and crystalline states,
so as to make the refractive index of PCMs change sharply and obtain a different ability
to confine the light field. Common PCMs include GeTe, Ge2Sb2Te5 (GST), Ge2Sb2Se4Te1
(GSST), VO2, and TiO2, etc. [25–28]. The phase-state switching of GST is non-volatile in
nature, while the phase transition of VO2 is volatile [29]. Compared with materials that re-
quire a constant energy supply to maintain their phase and optical properties, non-volatile
PCMs are more attractive for practical applications [30].

Furthermore, Sb2S3 is an unconventional phase-change material, which has a much
larger bandgap and, concomitantly, lower absorption. Its higher refractive index and low
phonon frequency make it attractive for applications that require high transmission from
the visible to the mid-infrared [30,31]. According to [31], we know the refractive indices of
Sb2S3 in the visible-light band, as shown in Figure 5. Here, aSb2S3 represents Sb2S3 in the
amorphous state and cSb2S3 represents Sb2S3 in the crystalline state.
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visible-light band. The red line represents the real part of the refractive index n5, and the blue line
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We can see that the real part of the refractive index of Sb2S3 is relatively large in
the visible light band, and it has a strong ability to confine light. At the same time, the
imaginary part of its refractive index is small, indicating that the absorption of light is very
weak. In fact, in the visible-light band, the extinction coefficient of Sb2S3 is much smaller
than that of the GST, and the real part of the refractive index of the Sb2S3 is larger than that
of the GST in the crystalline state [30]. Compared with the GST and VO2, the refractive
index of Sb2S3 varies greatly during the structural-phase transition in the visible range [32].
Therefore, Sb2S3 is well suited to tunable active photonics.

3. Simulations of Dynamically Tunable Structural Color
3.1. Structural Color Characteristics of the Designed Metasurface

Herein, we mainly study the characteristics of the wave reflected from the metasurface
in Figure 1. The thickness of the substrate silica is relatively large. In our simulation, the
thickness h4 of the substrate was always greater than 200 nm. After many simulations,
the optimal thickness h5 of Sb2S3 was 10 nm, and the optimum value of the grating-duty
cycle was 0.5. On the basis of these results, we further studies the optical properties of
the designed metasurface by changing one of the parameters h, p, and h3. We used FDTD
solutions to sweep one of the three parameters while keeping the other two unchanged.
When p = 360 nm, h = 70 nm, and h3 = 80 nm, the best red color was obtained. The reflection
spectrum and the CIE 1931 chromaticity diagram are shown in Figure 6, which contains
the results of three different grating heights. When h was adjusted, the reflectivity at the
resonance wavelength changed little, but the sidebands on both sides changed significantly.
During the simulation, we found that the influence of the thickness of the phase-change
material Sb2S3 on the position of the resonant peak was greater than that of the waveguide
layer. Next, we obtained the best green color when p = 290 nm, h = 70 nm, and h3 = 80 nm.
The corresponding reflection spectrum and the chromaticity diagram are shown in Figure 7,
which contains the results of three different grating periods. As the period p increased, the
resonance peak shifts red and the reflectivity also increased. Finally, we obtained the best
blue color when p = 260 nm, h = 100 nm, and h3 = 60 nm. The corresponding reflection
spectrum and the chromaticity diagram are shown in Figure 8, which contains the results
of three different thicknesses of the waveguide layer.
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From the simulation results, we found that the efficiency of the generation of green
and blue colors by using the proposed metasurface structure was relatively low. This was
mainly caused by the optical properties of the phase-change material itself, as the Sb2S3
had relatively large extinction coefficients in the green and blue bands. The results in
Figure 3 indicate that the GMR filter can efficiently generate three primary colors. However,
from the results in Figures 7 and 8, it can be seen that the combination of the GMR filter
and PCMs was not yet perfect. This is a further problem that we need to strive to solve
by, for example, searching for materials with lower extinction coefficients in the green
and blue bands to replace Sb2S3. After preliminary investigation, In2Se3 was found to be
a possible candidate material, which is expected to generate both green and blue colors
more efficiently.

3.2. Dynamic Tuning Characteristics

As shown in Section 2.3, we found that the refractive index of the phase-change
material, Sb2S3, underwent a significant change as it transitioned from the amorphous
to the crystalline state. In this section, we take the red band as an example to study the
color-dynamic-tuning ability of the designed optical metasurface. Firstly, we simulated a
case in which the Sb2S3 was in the amorphous state. The heights h of the grating were set to
60 nm, 70 nm, and 80 nm, respectively. The period p was set to 350 nm, 360 nm, and 370 nm,
respectively. Secondly, we simulated a case in which the Sb2S3 was in the crystalline state.
The values of the parameters h and p were the same as those in the amorphous state. The
simulated results are shown in Figure 9. Compared with the simulation results, it was
found that when the Sb2S3 was amorphous, the metasurface had a higher reflectivity, as
shown in Figure 9a,c,e, and the obtained structural-color brightness is better. This was
related to the low extinction coefficient of the amorphous Sb2S3. Additionally, it can be
seen from the chromaticity diagram that when the Sb2S3 was amorphous, changing the
height h or period p of the grating resulted in a more obvious change in the obtained
structural color, as shown in Figure 9b,d,f. In these three figures, the ap and cp represent
the parameters of period p when the Sb2S3 was in the amorphous and crystalline states,
respectively. The figures show that the designed metasurface structure was more sensitive
when the Sb2S3 was amorphous. From the reflection spectrum, we also found that the
resonance wavelength shifted red with the increase in the grating period p. This was
consistent with the theoretical prediction given by Equation (3). From the color palettes
in Figure 9g, we found that when changing the phase state of the Sb2S3, significant color
changes were observed in the metasurface structure, even with different parameters. In
Figure 9g, the horizontal axis represents the height h of the grating and the phase state of
the Sb2S3, and the vertical axis represents the period p of the grating. For example, the three
color blocks in the first column, from the bottom to the top, correspond to the colors where
Sb2S3 is in an amorphous state, the grating height h is 60 nm, and the grating periods p are
350 nm, 360 nm, and 370 nm, respectively.

We can transform Sb2S3 from the amorphous to the crystalline state by heating the
material. Using electrical or optical pulses with tunable pulse length and power can
reversibly crystallize and amorphize Sb2S3. Compared to optical switching excitation,
electrical switching excitation has more advantages because it does not require complex
alignment processes. Fang et al. found that the material Sb2S3 started to crystallize at
≈523 K, and the grain growth reached completion at 573 K [33]. Muskens et al. found that
the transition temperature of Sb2S3 is 543 K [31].By heating the material above its melting
temperature and then quenching the sample faster than the crystallization speed, we can
also change Sb2S3 from the crystalline to the amorphous state [31,33]. The material Sb2S3
can be switched between amorphous and crystalline states on a nanosecond time scale, and
the switching time is about 78 ns [30]. Mei et al. confirmed through experiments that the
cycling durability that Sb2S3 can achieve is 7000 cycles [34].
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Compared to materials such as GST, GSST, and VO2, Sb2S3 has a larger band gap [33,35–37],
resulting in lower light absorption and, thus, greater structural color brightness. The phase-
change temperature of Sb2S3 is higher than those of GST and VO2 [14,31] and lower than
that of GSST [31], indicating that Sb2S3 is not be the best choice if energy consumption
is the primary consideration. The crystallization switching time of Sb2S3 is 78 ns, which
is equivalent to that of GST and better than that of GSST [26,38]. The switching time of
VO2 between the metal and the semiconductor is about 2~3 ns in an electrically driven
manner [39]. In short, the switching time of Sb2S3 is sufficient in terms of practicality. The
cycling endurance of GST and GSST is about 105 cycles [25,40], which is far better than
that of Sb2S3. Of course, with the progress of technology and the improvement of heating
methods, the cycling durability of Sb2S3 will be further improved. The main parameters of
the four PCMs mentioned above are shown in Table 1.

Table 1. Comparison between main parameters of Sb2S3 and those of other common PCMs.

PCMs Bandgap Transition
Temperature

Switching
Time Drive Manner Cycling

Durability
Phase-Change

Property
Ability to

Tune Color

Sb2S3 1.7~2 eV [33] 270 ◦C/543 K [31] 78 ns [30] light-operated,
45~55 mw [31] >7000 cycles [34] non-volatile high

GST 0.5~0.7 eV [35] 160 ◦C/433 K [14] 50 ns [26] electric control,
1.2 V [41] >1015 cycles [25] non-volatile low

GSST 0.42~0.73 eV [36] 400 ◦C/673 K [31] 300 ns [38]
electric control,

<12 V [40],
5~24 V [42]

105 cycles [40] non-volatile medium

VO2 0.6 eV [37] 68 ◦C/341 K [31] 2~3 ns [39] electric control
20.68 V [43] volatile medium

In general, the higher the refractive index of a material, the stronger its ability to
localize light. The greater the change in refractive index of PCMs during the phase-
change process, the stronger their ability to tune structural color. The smaller the extinction
coefficient of a material, the less light it absorbs, and the resulting structural color brightness
is higher. Based on these principles, we analyzed the ability of these four PCMs to tune
structural color by comparing their refractive index, extinction coefficient, and refractive-
index-variation values. In contrast, Sb2S3 has a higher ability to tune structural color.

3.3. Environment-Sensing Properties of Tunable Structural Color Metasurface

In this section, we report the simulation of an application scenario in which the
designed metasurface was used to characterize the change of the refractive index n1 of
the cover layer. When the Sb2S3 remained in the amorphous or crystalline state, we
swept the refractive index n1 from 1 to 1.5 in steps of 0.1. The obtained chromaticity
diagrams and color palettes are shown in Figure 10. When Sb2S3 was in the amorphous
state and the refractive index n1 changed from 1 to 1.5, the chromaticity coordinates were
(0.5920, 0.3238), (0.6088, 0.3232), (0.5759, 0.2899), (0.4687, 0.2150), (0.4131, 0.1992), and
(0.3842, 0.2198), respectively. Additionally, when the refractive index n1 changed by 0.1,
the minimum linear distance between the chromaticity coordinates before and after the
refractive index change was about 0.017, and the maximum linear distance was about 0.131.
When the Sb2S3 was in the crystalline state and the refractive index n1 changed from 1 to
1.5, the chromaticity coordinates were (0.5692, 0.3809), (0.5727, 0.3949), (0.5047, 0.3516),
(0.3759, 0.2433), (0.3286, 0.2265), and (0.3107, 0.2544), respectively. Furthermore, when the
refractive index n1 changed by 0.1, the minimum linear distance between the chromaticity
coordinates before and after the refractive index change was about 0.014, and the maximum
linear distance was about 0.168. We define the sensing sensitivity s of the metasurface, and
the equation for s is as follows:

s = ∆d/∆n, (4)

where ∆n is the change in the refractive index of the environmental medium, and ∆d
is the linear distance between the chromaticity coordinates caused by ∆n. According to
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Equation (4), when Sb2S3 is in the amorphous state and the refractive index n1 changes
by 0.1, the maximum sensing sensitivity s of the designed metasurface is 1.31, and the
minimum value of the sensing sensitivity s is 0.17. When Sb2S3 is in the crystalline state and
the refractive index n1 changes by 0.1, the maximum sensing sensitivity s of the designed
metasurface is 1.68, and the minimum value of sensing sensitivity s is 0.14.
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On the other hand, when the refractive index n1 remains constant between 1~1.5, the
minimum linear distance between the chromaticity coordinates before and after the phase
transition of Sb2S3 is 0.061, and the maximum linear distance is 0.097. These results show
that the designed metasurface is sensitive to small changes in the refractive index of the
cover layer. We can conclude that the metasurface with the phase-change material Sb2S3
can sensitively display changes in ambient temperature, humidity, or material composition
through color. This is very useful in instruments such as colorimeters.

4. Conclusions

In summary, we investigated the optical properties of a GMR filter and the phase-
change characteristic of the material Sb2S3, and introduced a GMR filter and Sb2S3 into the
optical metasurface to produce tunable structural color. The simulation results show that
dynamically tunable structural color can be obtained through the phase transition of Sb2S3
between the amorphous and crystalline states. Taking the red color as an example, when
Sb2S3 changes from the amorphous to the crystalline state, the chromaticity coordinate
changes from (0.5920, 0.3238) to (0.5692, 0.3809). The linear distance between two chro-
maticity coordinates is about 0.06. Finally, we applied the designed optical metasurface to
check the refractive-index changes caused by changes in ambient temperature, humidity, or
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material composition. It can be concluded that the metasurface we proposed can sensitively
sense changes in the environment. This work provides a new idea for realizing dynamically
tunable structural color, and paves the way for the application of controllable structural
color in dynamic displays, optical stealth, colorimetric sensing, and other fields. We believe
that dynamically controllable structural color will increasingly enter individuals’ lives with
the further development of nano-processing technology.
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