Self-Pilot Tone Based Adaptive Threshold RZ-OOK Decision for Free-Space Optical Communications
Abstract
1. Introduction
2. Operation Principle
3. Simulations and Results
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Alzenad, M.; Shakir, M.Z.; Yanikomeroglu, H.; Alouini, M.S. FSO-based vertical backhaul/fronthaul framework for 5G+ wireless networks. IEEE Commun. Mag. 2018, 56, 218–224. [Google Scholar] [CrossRef]
- Hamza, A.S.; Deogun, J.S.; Alexander, D.R. Classification framework for free space optical communication links and systems. IEEE Commun. Surv. Tutor. 2019, 21, 1346–1382. [Google Scholar] [CrossRef]
- Kaushal, H.; Kaddoum, G. Optical communication in space: Challenges and mitigation techniques. IEEE Commun. Surv. Tutor. 2017, 19, 57–96. [Google Scholar] [CrossRef]
- Tycz, M.; Fitzmaurice, M.W.; Premo, D.A. Optical communication system performance with tracking error induced signal fading. IEEE Trans. Commun. 1973, 21, 1069–1072. [Google Scholar] [CrossRef]
- Zhu, X.; Kahn, J.M.; Wang, J. Mitigation of turbulence-induced scintillation noise in free-space optical links using temporal-domain detection techniques. IEEE Photonics Technol. Lett. 2003, 15, 623–625. [Google Scholar]
- Choi, I.Y.; Shin, W.H.; Han, S.K. CSI estimation with pilot tone for scintillation effects mitigation on satellite optical communication. Opt. Commun. 2019, 435, 88–92. [Google Scholar] [CrossRef]
- Zhang, R.; Hu, N.; Zhou, H.; Zou, K.; Su, X.; Zhou, Y.; Song, H.; Pang, K.; Song, H.; Minoofar, A.; et al. Turbulence-resilient pilot-assisted self-coherent free-space optical communications using automatic optoelectronic mixing of many modes. Nat. Photon. 2021, 15, 743–750. [Google Scholar] [CrossRef]
- Grant, K.J.; Corbett, K.A.; Clare, B.A. Dual wavelength free space optical communications. In Proceedings of the Conference on Lasers and Electro-Optics, Technical Digest (CD), Baltimore, MD, USA, 22–27 May 2005. paper CTuG3. [Google Scholar]
- Ding, S.L.; Zhang, J.K.; Dang, A.H. Adaptive threshold decision for on-off keying transmission systems in atmospheric turbulence. Opt. Express 2017, 25, 24425–24436. [Google Scholar] [CrossRef] [PubMed]
- Yoshisada, K.; Morio, T.; Yoshihisa, T.; Hideki, T. The uplink data received by OICETS. J. Natl. Inst. Inf. Commun. Technol. 2012, 59, 117–123. [Google Scholar]
- Wang, Y.; Feng, Y.; Ma, Y.; Chang, Z.; Peng, W.; Sun, Y.; Gao, Q.; Zhu, R.; Tang, C. 2.5 kW narrow linewidth linearly polarized all-fiber MOPA with cascaded phase-modulation to suppress SBS induced self-pulsing. IEEE Photonics J. 2020, 99, 1502815. [Google Scholar] [CrossRef]
- Engin, D.; Litvinovitch, S.; Gilman, C.; Cao, H.; Wysocki, T.; McIntosh, B.; Rudd, J.; Hqang, J.; Pachowicz, D.; Pettrilo, K.L.; et al. 50 W, 1.5 um, 8 WDM (25 nm) channels PPM Downlink Tx for Deep Space Lasercom. In Proceedings of the Conference on Free-Space Laser Communications, Online, 6–12 March 2021. [Google Scholar]
- Caplan, D.O.; Carney, J.J.; Fitzgerald, J.J.; Gaschits, I.; Kaminsky, R.; Lund, G.; Hamilton, S.A.; Magliocco, R.J.; Murphy, J.; Rao, H.G.; et al. Multi-rate DPSK optical transceivers for free-space applications. In Proceedings of the Free-Space Laser Communication and Atmospheric Propagation XXVI, San Francisco, CA, USA, 1–6 February 2014. [Google Scholar]
- Shin, W.H.; Lee, J.W.; Ha, I.H.; Han, S.K. Data rate enhancement of free space optical communication using pulse positioned differential phase shift keying. Opt. Express 2021, 29, 26039–26047. [Google Scholar] [CrossRef] [PubMed]
- Ezra, I.; Joseph, M.K. Power Spectra of Return-to-Zero Optical Signals. J. Lightwave Technol. 2006, 24, 1610–1618. [Google Scholar]
- Navidpour, S.; Uysal, M.; Kavehrad, M. BER Performance of Free-Space Optical Transmission with Spatial Diversity. IEEE Trans. Wirel. Commun. 2007, 6, 2813–2819. [Google Scholar] [CrossRef]
- Riediger, M.; Schober, R.; Lampe, L. Fast multiple-symbol detection for free-space optical communications. IEEE Trans. Commun. 2009, 57, 1119–1128. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lv, P.-F.; Hong, Y.-Q. Self-Pilot Tone Based Adaptive Threshold RZ-OOK Decision for Free-Space Optical Communications. Photonics 2023, 10, 714. https://doi.org/10.3390/photonics10070714
Lv P-F, Hong Y-Q. Self-Pilot Tone Based Adaptive Threshold RZ-OOK Decision for Free-Space Optical Communications. Photonics. 2023; 10(7):714. https://doi.org/10.3390/photonics10070714
Chicago/Turabian StyleLv, Peng-Fei, and Yan-Qing Hong. 2023. "Self-Pilot Tone Based Adaptive Threshold RZ-OOK Decision for Free-Space Optical Communications" Photonics 10, no. 7: 714. https://doi.org/10.3390/photonics10070714
APA StyleLv, P.-F., & Hong, Y.-Q. (2023). Self-Pilot Tone Based Adaptive Threshold RZ-OOK Decision for Free-Space Optical Communications. Photonics, 10(7), 714. https://doi.org/10.3390/photonics10070714