Self-Pilot Tone Based Adaptive Threshold RZ-OOK Decision for Free-Space Optical Communications
Abstract
:1. Introduction
2. Operation Principle
3. Simulations and Results
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Alzenad, M.; Shakir, M.Z.; Yanikomeroglu, H.; Alouini, M.S. FSO-based vertical backhaul/fronthaul framework for 5G+ wireless networks. IEEE Commun. Mag. 2018, 56, 218–224. [Google Scholar] [CrossRef] [Green Version]
- Hamza, A.S.; Deogun, J.S.; Alexander, D.R. Classification framework for free space optical communication links and systems. IEEE Commun. Surv. Tutor. 2019, 21, 1346–1382. [Google Scholar] [CrossRef]
- Kaushal, H.; Kaddoum, G. Optical communication in space: Challenges and mitigation techniques. IEEE Commun. Surv. Tutor. 2017, 19, 57–96. [Google Scholar] [CrossRef] [Green Version]
- Tycz, M.; Fitzmaurice, M.W.; Premo, D.A. Optical communication system performance with tracking error induced signal fading. IEEE Trans. Commun. 1973, 21, 1069–1072. [Google Scholar] [CrossRef]
- Zhu, X.; Kahn, J.M.; Wang, J. Mitigation of turbulence-induced scintillation noise in free-space optical links using temporal-domain detection techniques. IEEE Photonics Technol. Lett. 2003, 15, 623–625. [Google Scholar]
- Choi, I.Y.; Shin, W.H.; Han, S.K. CSI estimation with pilot tone for scintillation effects mitigation on satellite optical communication. Opt. Commun. 2019, 435, 88–92. [Google Scholar] [CrossRef]
- Zhang, R.; Hu, N.; Zhou, H.; Zou, K.; Su, X.; Zhou, Y.; Song, H.; Pang, K.; Song, H.; Minoofar, A.; et al. Turbulence-resilient pilot-assisted self-coherent free-space optical communications using automatic optoelectronic mixing of many modes. Nat. Photon. 2021, 15, 743–750. [Google Scholar] [CrossRef]
- Grant, K.J.; Corbett, K.A.; Clare, B.A. Dual wavelength free space optical communications. In Proceedings of the Conference on Lasers and Electro-Optics, Technical Digest (CD), Baltimore, MD, USA, 22–27 May 2005. paper CTuG3. [Google Scholar]
- Ding, S.L.; Zhang, J.K.; Dang, A.H. Adaptive threshold decision for on-off keying transmission systems in atmospheric turbulence. Opt. Express 2017, 25, 24425–24436. [Google Scholar] [CrossRef] [PubMed]
- Yoshisada, K.; Morio, T.; Yoshihisa, T.; Hideki, T. The uplink data received by OICETS. J. Natl. Inst. Inf. Commun. Technol. 2012, 59, 117–123. [Google Scholar]
- Wang, Y.; Feng, Y.; Ma, Y.; Chang, Z.; Peng, W.; Sun, Y.; Gao, Q.; Zhu, R.; Tang, C. 2.5 kW narrow linewidth linearly polarized all-fiber MOPA with cascaded phase-modulation to suppress SBS induced self-pulsing. IEEE Photonics J. 2020, 99, 1502815. [Google Scholar] [CrossRef]
- Engin, D.; Litvinovitch, S.; Gilman, C.; Cao, H.; Wysocki, T.; McIntosh, B.; Rudd, J.; Hqang, J.; Pachowicz, D.; Pettrilo, K.L.; et al. 50 W, 1.5 um, 8 WDM (25 nm) channels PPM Downlink Tx for Deep Space Lasercom. In Proceedings of the Conference on Free-Space Laser Communications, Online, 6–12 March 2021. [Google Scholar]
- Caplan, D.O.; Carney, J.J.; Fitzgerald, J.J.; Gaschits, I.; Kaminsky, R.; Lund, G.; Hamilton, S.A.; Magliocco, R.J.; Murphy, J.; Rao, H.G.; et al. Multi-rate DPSK optical transceivers for free-space applications. In Proceedings of the Free-Space Laser Communication and Atmospheric Propagation XXVI, San Francisco, CA, USA, 1–6 February 2014. [Google Scholar]
- Shin, W.H.; Lee, J.W.; Ha, I.H.; Han, S.K. Data rate enhancement of free space optical communication using pulse positioned differential phase shift keying. Opt. Express 2021, 29, 26039–26047. [Google Scholar] [CrossRef] [PubMed]
- Ezra, I.; Joseph, M.K. Power Spectra of Return-to-Zero Optical Signals. J. Lightwave Technol. 2006, 24, 1610–1618. [Google Scholar]
- Navidpour, S.; Uysal, M.; Kavehrad, M. BER Performance of Free-Space Optical Transmission with Spatial Diversity. IEEE Trans. Wirel. Commun. 2007, 6, 2813–2819. [Google Scholar] [CrossRef] [Green Version]
- Riediger, M.; Schober, R.; Lampe, L. Fast multiple-symbol detection for free-space optical communications. IEEE Trans. Commun. 2009, 57, 1119–1128. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lv, P.-F.; Hong, Y.-Q. Self-Pilot Tone Based Adaptive Threshold RZ-OOK Decision for Free-Space Optical Communications. Photonics 2023, 10, 714. https://doi.org/10.3390/photonics10070714
Lv P-F, Hong Y-Q. Self-Pilot Tone Based Adaptive Threshold RZ-OOK Decision for Free-Space Optical Communications. Photonics. 2023; 10(7):714. https://doi.org/10.3390/photonics10070714
Chicago/Turabian StyleLv, Peng-Fei, and Yan-Qing Hong. 2023. "Self-Pilot Tone Based Adaptive Threshold RZ-OOK Decision for Free-Space Optical Communications" Photonics 10, no. 7: 714. https://doi.org/10.3390/photonics10070714
APA StyleLv, P. -F., & Hong, Y. -Q. (2023). Self-Pilot Tone Based Adaptive Threshold RZ-OOK Decision for Free-Space Optical Communications. Photonics, 10(7), 714. https://doi.org/10.3390/photonics10070714