Controllable Helico-Conical Beam Generated with the Bored Phase
Abstract
1. Introduction
2. Controllable Helico-Conical Beams
3. Intensity Distributions at the Focal Plane
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Padgett, M.; Courtial, J.; Allen, L. Light’s orbital angular momentum. Phys. Today 2004, 57, 35–40. [Google Scholar] [CrossRef]
- Li, X.K.; Li, Y.; Zeng, X.N.; Han, Y.H. Perfect optical vortex array for optical communication based on orbital angular momentum shift keying. J. Opt. 2018, 20, 125604. [Google Scholar] [CrossRef]
- Wang, J.; Yang, J.; Fazal, I.M.; Ahmed, N.; Yan, Y.; Huang, H.; Ren, Y.; Yue, Y.; Dolinar, S.; Tur, M.; et al. Terabit free-space data transmission employing orbital angular momentum multiplexing. Nat. Photon. 2012, 6, 488–496. [Google Scholar] [CrossRef]
- Wang, J. Advances in communications using optical vortices. Photon. Res. 2016, 4, 14–28. [Google Scholar] [CrossRef][Green Version]
- Anguita, J.A.; Herreros, J.; Djordjevic, I.B. Coherent Multimode OAM Superpositions for Multidimensional Modulation. IEEE Photon. J. 2014, 6, 1–11. [Google Scholar] [CrossRef]
- Chen, M.; Mazilu, M.; Arita, Y.; Wright, E.M.; Dholakia, K. Dynamics of microparticles trapped in a perfect vortex beam. Opt. Lett. 2013, 38, 4919–4922. [Google Scholar] [CrossRef] [PubMed]
- Shvedov, V.G.; Desyatnikov, A.S.; Rode, A.V.; Izdebskaya, Y.V.; Krolikowski, W.Z.; Kivshar, Y.S. Optical vortex beams for trapping and transport of particles in air. Appl. Phys. A 2010, 100, 327–331. [Google Scholar] [CrossRef]
- Zhao, C.; Cai, Y. Trapping two types of particles using a focused partially coherent elegant Laguerre-Gaussian beam. Opt. Lett. 2011, 36, 2251–2253. [Google Scholar] [CrossRef]
- Simpson, N.B.; Allen, L.; Padgett, M.J. Optical tweezers and optical spanners with Laguerre-Gaussian modes. J. Mod. Opt. 1996, 43, 2485–2491. [Google Scholar] [CrossRef]
- Fu, S.; Wang, T.; Zhang, Z.; Zhai, Z.; Gao, C. Non-diffractive Bessel-Gauss beams for the detection of rotating object free of obstructions. Opt. Express 2017, 25, 20098–20108. [Google Scholar] [CrossRef]
- Lavery, M.; Speirits, F.; Barnett, S.M.; Padgett, M.J. Detection of a spinning object using light’s orbital angular momentum. Science 2013, 341, 537–540. [Google Scholar] [CrossRef] [PubMed][Green Version]
- Abramochkin, E.; Volostnikov, V. Spiral-type beams: Optical and quantum aspects. Opt. Commun. 1996, 125, 302–323. [Google Scholar] [CrossRef]
- Rodrigo, J.A.; Alieva, T. Polymorphic beams and Nature inspired circuits for optical current. Sci. Rep. 2016, 6, 35341. [Google Scholar] [CrossRef][Green Version]
- Khonina, S.N.; Ustinov, A.V. Focusing of shifted vortex beams of arbitrary order with different polarization. Opt. Commun. 2018, 426, 359–365. [Google Scholar] [CrossRef]
- Soifer, V.A.; Kharitonov, S.I.; Khonina, S.N.; Strelkov, Y.S.; Porfirev, A.P. Spiral caustics of vortex beams. Photonics 2021, 8, 24. [Google Scholar] [CrossRef]
- Khonina, S.N.; Krasnov, S.V.; Ustinov, A.V.; Degtyarev, S.A.; Porfirev, A.P.; Kuchmizhak, A.; Kudryashov, S.I. Refractive twisted microaxicons. Opt. Lett. 2020, 45, 1334–1337. [Google Scholar] [CrossRef]
- Alonzo, C.A.; Rodrigo, P.; Glückstad, J. Helico-conical optical beams: A product of helical and conical phase fronts. Opt. Express 2005, 13, 1749–1760. [Google Scholar] [CrossRef][Green Version]
- Nathaniel, N.P., II; Manaois, C. Phase structure of helico-conical optical beams. Opt. Commun. 2007, 271, 178–183. [Google Scholar]
- Alonzo, C.A.; Rodrigo, P.J.; Perch-Nielsen, I.R.; Glückstad, J. Three-dimensional intensity distribution of helico-conical optical beams. Proc. SPIE 2007, 6483, 197–205. [Google Scholar]
- Engay, E.; Bañas, A.R.; Bunea, A.I.; Separa, S.D.; Glückstad, J. Interferometric detection of OAM-carrying Helico-conical beams. Opt. Commun. 2018, 433, 247–251. [Google Scholar] [CrossRef]
- Hermosa, N.; Rosales-Guzmán, C.; Torres, J.P. Helico-conical optical beams self-heal. Opt. Lett. 2013, 38, 383–385. [Google Scholar] [CrossRef] [PubMed][Green Version]
- Slavchev, V.; Dakova, A.; Bojikoliev, I.; Dakova, D.; Kovachev, L. Helical vortex structures and depolarization in fiber with concave-gradient profile. Optik 2021, 242, 167124. [Google Scholar] [CrossRef]
- Shan, X.; Miao, Y.; Wang, G.; Gao, X. Focusing properties of azimuthally polarized helico-conical lorentz-gauss beams. Optik 2021, 242, 167058. [Google Scholar] [CrossRef]
- Cheng, S.B.; Xia, T.; Liu, M.S.; Jin, Y.Y.; Zhang, G.; Xiong, Y.; Tao, S.H. Power-exponent helico-conical optical beams. Opt. Laser Technol. 2019, 117, 288–292. [Google Scholar] [CrossRef]
- Xia, T.; Tao, S.H.; Cheng, S.B. A spiral-like curve with an adjustable opening generated by a modified helico-conical beam. Opt. Commun. 2020, 458, 124824. [Google Scholar] [CrossRef]
- Baluyot, S.; Hermosa, N.P. Intensity profiles and propagation of optical beams with bored helical phase. Opt. Express 2009, 17, 16244–16254. [Google Scholar] [CrossRef]
- Baluyot, S.A.; Hermosa, N. Controllable rotation of optical beams with bored helical phases. Appl. Opt. 2010, 49, 673–677. [Google Scholar] [CrossRef]
- Xiao, M.; Zheng, S.; Shen, D.; Duley, W.W.; Zhou, Y.N. Laser-induced Joining of Nanoscale Materials: Processing, Properties, and Applications. Nano Today 2020, 35, 100959. [Google Scholar] [CrossRef]
- Omatsu, T.; Miyamoto, K.; Toyoda, K.; Morita, R.; Arita, Y.; Dholakia, K. A New Twist for Materials Science: The Formation of Chiral Structures Using the Angular Momentum of Light. Adv. Optical Mater. 2019, 7, 1801672. [Google Scholar] [CrossRef]
- Ni, J.; Wang, C.; Zhang, C.; Hu, Y.; Yang, L.; Lao, Z.; Xu, B.; Li, J.; Wu, D.; Chu, J. Three-dimensional chiral microstructures fabricated by structured optical vortices in isotropic material. Light Sci. Appl. 2017, 6, e17011. [Google Scholar] [CrossRef][Green Version]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Liu, X.; Liu, S.; Cheng, S. Controllable Helico-Conical Beam Generated with the Bored Phase. Photonics 2023, 10, 577. https://doi.org/10.3390/photonics10050577
Liu X, Liu S, Cheng S. Controllable Helico-Conical Beam Generated with the Bored Phase. Photonics. 2023; 10(5):577. https://doi.org/10.3390/photonics10050577
Chicago/Turabian StyleLiu, Xuejuan, Shuo Liu, and Shubo Cheng. 2023. "Controllable Helico-Conical Beam Generated with the Bored Phase" Photonics 10, no. 5: 577. https://doi.org/10.3390/photonics10050577
APA StyleLiu, X., Liu, S., & Cheng, S. (2023). Controllable Helico-Conical Beam Generated with the Bored Phase. Photonics, 10(5), 577. https://doi.org/10.3390/photonics10050577