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Abstract: A controllable helico-conical beam is proposed in this paper. The intensity patterns and
the local spatial frequency of the controllable helico-conical beams in the focal region are analyzed
in detail. The results show that the length of the helico-conical beams can be customized by the
variable parameter k, and the angular dimension of the bored spiral trajectory is dependent on
the proportion k/l. Moreover, the focal-field energy flow density and orbital angular momentum
distributions of the controllable helico-conical beams are also analyzed. The proposed helico-conical
beams with controllable lengths can be potentially applied in the field of optical guiding.
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1. Introduction

Optical beams with orbital angular momentum (OAM), e.g., optical vortices, have
been widely used in optical communications and optical manipulation [1–13]. The high-
order Bessel-Gauss beam with the non-diffractive and self-reconstructing properties was
used for the three-dimensional trapping of microparticles [10]. Recently, unconventional
types of optical beams have been proposed and analyzed. For example, spiral-type beams
can be generated utilizing the astigmatic transforms [12], superposition of diffraction-free
beams [13], focusing of shifted vortex beams [14], spiral toroidal lens [15], and refrac-
tive twisted microaxicons [16]. A new kind of beam, generated with inseparable helical
and conical phases, has been proven to have a spiral-like intensity profile at the focal
plane. The beam may find application for optical guiding [17]. Subsequently, the phase
structure and interference characteristics of the helico-conical optical beam have been
also analyzed [18–20]. In addition, some experts have investigated the self-reconstruction
property of the optical beam [21]. The helical vortex structures are also connected with the
depolarization of the laser beams and pulses [22,23]. We modified the helico-conical optical
beam by adding a power exponent [24,25]. The proposed beams have controllable openings
along the intensity trajectory, which can be dependent on the power exponent. Nathaniel
Hermosa et al. proposed a method to control the intensity patterns of the helical beam, i.e.,
modifying the phase by boring a hole at the center of the helical phase [26,27]. The results
show that the area of the bored hole has a great influence on the intensity patterns of the
beam. The proposed method can also be introduced into the helico-conical phases. With
the advancement of nanotechnology, the modulated beam can potentially be applied in
the laser-induced nano-joining of nanoscale materials and the generation of light-induced
helical-structured materials [28,29]. In isotropic polymers, 3D chiral microstructures can be
achieved under the illumination of the spiral lobes and chirality generated by the helical
wavefronts [30].

In this paper, we customized the helico-conical phases to control the length of the
helico-conical beams. The customized phases are obtained by eliminating the partial helico-
conical phase which is restricted with a filter. We will analyze the intensity patterns of
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the controllable helico-conical beams in the focal region theoretically and experimentally.
Based on the local spatial frequency, we discuss the dependence of the focal field intensity
distributions of the controllable helico-conical beams on the filter parameter k. We also
analyze the properties of the beam utilizing the energy flow density. The controllable
helico-conical beams will find application for the optical guiding and light-induced helical-
structured materials.

2. Controllable Helico-Conical Beams

The inseparable helical and conical phase profiles of the helico-conical beam can be
written as [17]

ψ(r, θ) = lθ(K− r/r0) (1)

where the parameter K is equal to 0 or 1, l is the topological charge which determines the
number and direction of the spiral wavefront, θ is the azimuth angle ranging from 0 to 2π
in the polar coordinate system, and r0 is the normalization factor of the radial coordinate r.
In this paper, the usable size of the spatial light modulator (SLM) is 1920 × 1080 pixels with
a pixel pitch of 8 µm, so the value of the radius r0 can be set as 4.32 mm and r can range
from 0 to 4.32 mm. The wavelength of the laser beam in the simulations and experiments is
set as 532 nm.

Based on Equation (1), the focal-field distributions of the beams can be simulated by
the Fourier transform. In this paper, to generate the controllable spiral intensity patterns,
we customized the phase hologram generated with the phase function in Equation (1). The
bored phase in Figure 1c,f was obtained by customizing a partial helico-conical region along
the screw dislocation of the helico-conical phase, which can be expressed by a matrix in
the simulations. The bored phase profile can be written as ψBored = ψ(r, θ) · F(r, θ), where
F(r, θ) is a filter function. The filter can be given by

F(r, θ) =

{
1 2πk ≤ |ψ(r, θ)| ≤ 2π|l|
0 else

(2)
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focal-field intensity distributions. The heads of the helico-conical beams shown in Fig-
ures 2f and 3f can be marked with yellow arrows. The heads of the beams gradually 
vanish as the bored phase profile increases. It can also be seen from Figures 2 and 3 that 
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Figure 1. The generation of the bored helico-conical phase profiles. (a,d) the helico-conical phases
with l = 20, K = 0, and K = 1, respectively. (b,e) the filters with k = 6, l = 20, K = 0, and K = 1, respectively.
(c,f) the bored phases with l = 20, k = 6, K = 0, and K = 1, respectively.

Thus, the bored phase is also written as

ψBored =

{
ψ(r, θ) 2πk ≤ |ψ(r, θ)| ≤ 2π|l|
0 else

(3)

The helico-conical phases with l = 20, K = 0, and K = 1 are shown in Figure 1a,d
respectively. Figure 1b,e show the filter F with the parameters l = 20, k = 6, K = 0, and
K = 1, respectively. Figure 1c,f show the corresponding bored helico-conical phase with
K = 0 and K = 1, respectively. The variable parameter k is an integer ranging from 0 to l. In
fact, when the parameter k is equal to 0, the bored phase profile is the whole helico-conical
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phase. In the simulation and experiments, we eliminated the central intensity peak by
adding the blazed gratings into the holograms in order to analyze the bored intensity
distribution better.

3. Intensity Distributions at the Focal Plane

We analyzed the focal-field distributions of the controllable helico-conical beams. For
ease of observation, we used normalized intensity for numerical simulations. The focal-field
intensity distributions can be calculated by

u(ρ, φ) =
∫ 2π

0

∫ ∞

0
F(r, θ) exp[iψ(r, θ)] exp[−i2πrρ cos(θ − φ)]rdrdθ (4)

F(r, θ) is the filter function in Equation (2), and ψ(r, θ) is the phase function. It is
convenient to evaluate Equation (4) numerically with the FFT algorithm. The intensity
distribution can be calculated by I(ρ, φ) =|u(ρ, φ)|2.

Figure 2a shows the helico-conical phase profile with K = 0 and l = 20. Figure 2b–e
show the bored phase profiles with K = 0, l = 20, and k = 1, 4, 7, and 10, respectively.
Figure 2f–j show the corresponding focal-field intensity distributions. Figure 3a shows
the helico-conical phase profile with K = 1 and l = 20. Figure 3b–e show the bored phase
profiles with K = 1, l = 20, and k =1, 4, 7, and 10, respectively. Figure 3f–j show the corre-
sponding focal-field intensity distributions. The heads of the helico-conical beams shown
in Figures 2f and 3f can be marked with yellow arrows. The heads of the beams gradually
vanish as the bored phase profile increases. It can also be seen from Figures 2 and 3 that
the spiral intensity trajectories of the controllable helico-conical beams gradually become
shorter with the increasing parameter k.
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In this paper, the local spatial frequency distribution was used to analyze the spiral
intensity trajectories of the controllable helico-conical beams. Generally, the approximate
mapping of the local spatial frequency can be expressed by [17]

ξ ′ =
1

2π

∂

∂x
ψ(x, y) and ζ ′ =

1
2π

∂

∂y
ψ(x, y) (5)

Thus, the local spatial frequency of the controllable helico-conical beams can be
described by the equation ξ ′ = ξ · F and ζ ′ = ζ · F, respectively [12]. Based on the phase
function in Equation (1) and the filter function F in Equation (2), the approximate mapping
of the local spatial frequency for the beams with K = 0 and K = 1 in polar coordinates are
expressed as Equations (6) and (7), respectively.

ξ
′
K=0 =

{ l
2πr0

(−θ cos θ + sin θ) 2πk ≤ |ψ(r, θ)| ≤ 2π|l|
0 else

and

ζ
′
K=0 =

{ l
2πr0

(−θ sin θ − cos θ) 2πk ≤ |ψ(r, θ)| ≤ 2π|l|
0 else

(6)

ξ
′
K=1 =

{ l
2πr0

(−θ cos θ − r0−r
r sin θ) 2πk ≤ |ψ(r, θ)| ≤ 2π|l|

0 else
and

ζ
′
K=1 =

{ l
2πr0

(−θ sin θ + r0−r
r cos θ) 2πk ≤ |ψ(r, θ)| ≤ 2π|l|

0 else

(7)

The plots (ξ
′
K=0, ζ

′
K=0) of the controllable helico-conical beams with K = 0, l = 20,

and k = 0, 1, 4, 7, and 10 are shown in Figure 4a–e, respectively. The plots (ξ
′
K=1, ζ

′
K=1)

of the controllable helico-conical beams with K = 1, l = 20, and k = 0, 1, 4, 7, and 10
are shown in Figure 4f–j, respectively. In Figure 4a, the points accumulate in a spiral,
corresponding to the helico-conical beam with K = 0 and l = 20. With k increasing, the
partial region of the phase was bored, as is shown in Figure 2b–e. The resulting spiral
intensity trajectories of the beams became shorter. The inner and outer phases of the helico-
conical phase with K = 0 corresponded to the head and tail of the spiral intensity trajectories,
respectively. Contrariwise, the inner and outer phases of the helico-conical phase with K = 1
corresponded to the tail and head of the spiral intensity trajectories, respectively. From
Figure 4b,g, it also can be seen that an observable dislocation of the spiral’s head occurs.
The spot diagrams of the local spatial frequency shown in Figure 4a–j agree well with the
results shown in Figures 2f–j and 3f–j, respectively.
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The dependence of the focal-field intensity for the controllable helico-conical beams
on the parameter k is analyzed in this paper. The length of the spiral intensity trajectories
shown in Figure 4 cannot be measured simply and directly. Thus, we used the angular
dimension to describe the change of the spiral intensity trajectories indirectly. The spiral’s
head was treated as the origin, and the endpoint along the spiral trajectory was treated
as the tail. The azimuth between the head-to-tail connecting line and the horizontal axis
(the x-axis in Figure 5) describes the length of the bored spiral intensity trajectories. The
calculation of the azimuth is shown in Figure 5. In the spot diagrams of the local spatial
frequency for the controllable beams with K = 0, l = 20, and k = 0 (see Figure 5a), the
corresponding azimuth for the whole helico-conical beam is 3π/2. As an example, the
corresponding azimuth for the controllable helico-conical beams with K = 0, l = 20, and
k = 12 is about 0.6712π, as is shown in Figure 5b.
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helico-conical beams with K = 1, l = 5, 10, 15, and 20, respectively. The lines represent the linear
regression lines.

With the method shown in Figure 5a,b, the plots of the azimuth versus the parameter k
for the controllable helico-conical beams with K = 0 and K = 1 are shown in Figure 5c,d
respectively. The azimuth calculated with the local spatial spectrum corresponding to the
different topological charges l = 5, 10, 15, 20 is marked with different legends and colors. The
linear fitting of the data was implemented, and the corresponding linear regression lines
are marked with the corresponding colors. The results demonstrate that the azimuth scales
linearly with the parameter k and the slope of the linear regression line can be dependent
on the topological charge l. The dependence of the azimuth ϕ on the parameter k can be
empirically written as

ϕ(k) =

{
3π/2

l (l − k) K= 0
2π
l (l − k) K= 1

(8)

In Equation (6), the magnitude of the slope is− 3π/2
l and− 2π

l , respectively. The minus
sign before the parameter k indicates that the angular dimension decreases as the variable
parameter k increases. Thus, we can generate customizable helico-conical beams with the
bored helico-conical phases.
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We also analyzed the focal-field intensity distributions with the Poynting vector. The
energy flow in the focal-field region of the controllable helico-conical beams was calculated.
The Poynting vector can be described by the following formula [1],〈→

S
〉

= c
4π

〈→
E ×

→
B
〉

= c
8π [(E∗ × B) + (E× B∗)]

=
[

iωc
8π

(
u ∂u∗

∂y − u∗ ∂u
∂y

)]→
x +

[
iωc
8π

(
u ∂u∗

∂x − u∗ ∂u
∂x

)]→
y + ωkc

4π |u|
2→z

(9)

where c,
→
E and

→
B represent light speed, electric field intensity vector, and magnetic field

intensity vector, respectively;
→
x ,
→
y , and

→
z denote the unit vectors along the x, y, and z

directions, respectively. ω and k (k = 2π/λ) are the angular frequency and the wave number
of the controllable helico-conical beam, respectively. The three components in the x, y, and z
directions denote the energy flow in the different directions, respectively.

The transversal energy flows (i.e., x-y plane) of the controllable helico-conical beams
were calculated and analyzed in this paper. Figure 6a–j show the focal-field transverse
energy flow of the controllable helico-conical with K = 0, l = 20, and k = 0, 1, 4, 7, and 10;
K = 1, l = 20, and k = 0, 1, 4, 7, and 10, respectively. The direction and magnitude of the
green arrows in the figures demonstrate the direction and size of the energy flow at the
Fourier transform plane. From the figures, it can be seen that the energy flow is flowing
towards the interior of the bored helico-conical beam, which demonstrated that the beam
can trap particles and bind particles towards the spiral trajectories.
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Figure 6. (a–e) The transverse energy flow of the controllable helicon-conical beams with K = 0,
l = 20, and k = 0, 1, 4, 7, and 10, respectively. (f–j) The transverse energy flow of the controllable
helicon-conical beams with K = 1, l = 20, and k = 0, 1, 4, 7, and 10, respectively.

The controllable helico-conical beams also carry the OAM at the focal plane. The
focal-field OAM density of the controllable helico-conical beams in free space can be
described by

jz = (r× ε0〈E× B〉)z = xSy − ySx (10)

where, E and B denote the electric and magnetic fields, respectively; r = (x2 + y2)1/2, Sx and
Sy are the Poynting vector along the x and y directions, respectively.

Figure 7a–e demonstrate the focal-field OAM density distributions of the controllable
helico-conical beams with K = 0, l = 20, and k = 0, 1, 4, 7, and 10, respectively. Figure 7f–j
illustrate the focal-field OAM density distributions of the controllable helico-conical beam
with K = 1, l = 20, and k = 0, 1, 4, 7, and 10, respectively. The OAM density distributions of
the controllable beams at the focal plane are roughly consistent with the focal-field intensity
distributions. With the missing part of the helico-conical phase profile increased, the OAM
density distributions are totally changed and follow the bored spiral lines. The OAM
density also decreased gradually. We analyzed the relationship between the normalized
OAM density and the parameter k. The plots of the normalized OAM density versus
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the parameter k are shown in Figure 8. When K = 1, the focal-field OAM density of the
controllable helico-conical beam is relatively large. However, as the parameter k increased,
the OAM density decreased. When the parameter k is larger (e.g., k = 20), the whole
helico-conical phase profile is missing basically and the corresponding OAM density is
close to 0. Thus, the helico-conical beam can be modulated by considering the above results
and can be applied to optical trapping and light-induced helical-structured materials.
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Figure 8. Influence of k and K on the OAM density of the controllable helico-conical beams.

In this paper, the experimental focal field intensity patterns of the controllable helico-
conical beams have been analyzed. Figure 9a shows the schematic setup for generating
the controllable helico-conical beams. A collimated and expanded laser (λ = 532 nm) beam
impinged onto the SLM (reflective type), which was encoded with a computer-generated
hologram. The flat convex lens L1 (f 1 = 30 mm) and L2 (f 2 = 200 mm) was used for the
collimation and expansion of the optical beams. The lens (L3, f 3 = 150 mm) was a Fourier-
transform lens. The intensity cross-sections of the desired beams were captured by the CCD
camera. During the experiments, the corresponding phase profiles in Figures 2a–e and 3a–e
were loaded on the SLM, respectively. The corresponding intensity patterns at the focal
plane are shown in Figure 9b–k, respectively. The experiment results are consistent with
the simulated ones shown in Figures 2f–j and 3f–j, respectively. The focal field intensity
distributions were determined by the parameter k.
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Figure 9. (a) The schematic experimental setup for generating the controllable helico-conical beams.
(b–f) The focal field intensity distributions of the controllable helico-conical beams with K = 0, l = 20,
and k = 0, 1, 4, 7, and 10, respectively. (g–k) The focal field intensity distributions of the controllable
helico-conical beams with K = 1, l = 20, and k = 0, 1, 4, 7, and 10, respectively.

4. Conclusions

A controllable helico-conical beam with a different intensity trajectory was proposed
in this paper. The focal-field intensity distributions of the controllable helico-conical beams
have been discussed. The spiral intensity trajectories of the controllable helico-conical
beams were shorter with the increasing parameter k. The resulting azimuth scales linearly
with the parameter k. The arrows of the energy flow density point to the interior of the
spiral-like beam. When the missing part of the helico-conical phase profile increases, the
OAM density distributions are totally changed, and follow the bored spiral lines. The OAM
density also decreases gradually. The proposed helico-conical beams with the controllable
length are promising in the optical guiding of microparticles and light-induced helical-
structured materials.

Author Contributions: Conceptualization, S.L., X.L. and S.C.; data curation, X.L.; formal analysis,
X.L. and S.C.; methodology, S.L. and X.L.; resources, X.L.; software, X.L.; data curation, S.L.; writing-
original draft preparation, S.L. and X.L.; writing-review and editing, X.L. and S.C. All authors have
read and agreed to the published version of the manuscript.

Funding: The authors are grateful for the support of the National Natural Science Foundation
of China (No. 11904032) and the Talent Introduction Program of Chengdu Normal University
(No. YJRC2021-14).

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: Not applicable.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Padgett, M.; Courtial, J.; Allen, L. Light’s orbital angular momentum. Phys. Today 2004, 57, 35–40. [CrossRef]
2. Li, X.K.; Li, Y.; Zeng, X.N.; Han, Y.H. Perfect optical vortex array for optical communication based on orbital angular momentum

shift keying. J. Opt. 2018, 20, 125604. [CrossRef]
3. Wang, J.; Yang, J.; Fazal, I.M.; Ahmed, N.; Yan, Y.; Huang, H.; Ren, Y.; Yue, Y.; Dolinar, S.; Tur, M.; et al. Terabit free-space data

transmission employing orbital angular momentum multiplexing. Nat. Photon. 2012, 6, 488–496. [CrossRef]
4. Wang, J. Advances in communications using optical vortices. Photon. Res. 2016, 4, 14–28. [CrossRef]
5. Anguita, J.A.; Herreros, J.; Djordjevic, I.B. Coherent Multimode OAM Superpositions for Multidimensional Modulation. IEEE

Photon. J. 2014, 6, 1–11. [CrossRef]

https://doi.org/10.1063/1.1768672
https://doi.org/10.1088/2040-8986/aaef28
https://doi.org/10.1038/nphoton.2012.138
https://doi.org/10.1364/PRJ.4.000B14
https://doi.org/10.1109/JPHOT.2014.2309645


Photonics 2023, 10, 577 9 of 9

6. Chen, M.; Mazilu, M.; Arita, Y.; Wright, E.M.; Dholakia, K. Dynamics of microparticles trapped in a perfect vortex beam. Opt. Lett.
2013, 38, 4919–4922. [CrossRef] [PubMed]

7. Shvedov, V.G.; Desyatnikov, A.S.; Rode, A.V.; Izdebskaya, Y.V.; Krolikowski, W.Z.; Kivshar, Y.S. Optical vortex beams for trapping
and transport of particles in air. Appl. Phys. A 2010, 100, 327–331. [CrossRef]

8. Zhao, C.; Cai, Y. Trapping two types of particles using a focused partially coherent elegant Laguerre-Gaussian beam. Opt. Lett.
2011, 36, 2251–2253. [CrossRef]

9. Simpson, N.B.; Allen, L.; Padgett, M.J. Optical tweezers and optical spanners with Laguerre-Gaussian modes. J. Mod. Opt. 1996,
43, 2485–2491. [CrossRef]

10. Fu, S.; Wang, T.; Zhang, Z.; Zhai, Z.; Gao, C. Non-diffractive Bessel-Gauss beams for the detection of rotating object free of
obstructions. Opt. Express 2017, 25, 20098–20108. [CrossRef]

11. Lavery, M.; Speirits, F.; Barnett, S.M.; Padgett, M.J. Detection of a spinning object using light’s orbital angular momentum. Science
2013, 341, 537–540. [CrossRef] [PubMed]

12. Abramochkin, E.; Volostnikov, V. Spiral-type beams: Optical and quantum aspects. Opt. Commun. 1996, 125, 302–323. [CrossRef]
13. Rodrigo, J.A.; Alieva, T. Polymorphic beams and Nature inspired circuits for optical current. Sci. Rep. 2016, 6, 35341. [CrossRef]
14. Khonina, S.N.; Ustinov, A.V. Focusing of shifted vortex beams of arbitrary order with different polarization. Opt. Commun. 2018,

426, 359–365. [CrossRef]
15. Soifer, V.A.; Kharitonov, S.I.; Khonina, S.N.; Strelkov, Y.S.; Porfirev, A.P. Spiral caustics of vortex beams. Photonics 2021, 8, 24.

[CrossRef]
16. Khonina, S.N.; Krasnov, S.V.; Ustinov, A.V.; Degtyarev, S.A.; Porfirev, A.P.; Kuchmizhak, A.; Kudryashov, S.I. Refractive twisted

microaxicons. Opt. Lett. 2020, 45, 1334–1337. [CrossRef]
17. Alonzo, C.A.; Rodrigo, P.; Glückstad, J. Helico-conical optical beams: A product of helical and conical phase fronts. Opt. Express

2005, 13, 1749–1760. [CrossRef]
18. Nathaniel, N.P., II; Manaois, C. Phase structure of helico-conical optical beams. Opt. Commun. 2007, 271, 178–183.
19. Alonzo, C.A.; Rodrigo, P.J.; Perch-Nielsen, I.R.; Glückstad, J. Three-dimensional intensity distribution of helico-conical optical

beams. Proc. SPIE 2007, 6483, 197–205.
20. Engay, E.; Bañas, A.R.; Bunea, A.I.; Separa, S.D.; Glückstad, J. Interferometric detection of OAM-carrying Helico-conical beams.

Opt. Commun. 2018, 433, 247–251. [CrossRef]
21. Hermosa, N.; Rosales-Guzmán, C.; Torres, J.P. Helico-conical optical beams self-heal. Opt. Lett. 2013, 38, 383–385. [CrossRef]

[PubMed]
22. Slavchev, V.; Dakova, A.; Bojikoliev, I.; Dakova, D.; Kovachev, L. Helical vortex structures and depolarization in fiber with

concave-gradient profile. Optik 2021, 242, 167124. [CrossRef]
23. Shan, X.; Miao, Y.; Wang, G.; Gao, X. Focusing properties of azimuthally polarized helico-conical lorentz-gauss beams. Optik 2021,

242, 167058. [CrossRef]
24. Cheng, S.B.; Xia, T.; Liu, M.S.; Jin, Y.Y.; Zhang, G.; Xiong, Y.; Tao, S.H. Power-exponent helico-conical optical beams. Opt. Laser

Technol. 2019, 117, 288–292. [CrossRef]
25. Xia, T.; Tao, S.H.; Cheng, S.B. A spiral-like curve with an adjustable opening generated by a modified helico-conical beam. Opt.

Commun. 2020, 458, 124824. [CrossRef]
26. Baluyot, S.; Hermosa, N.P. Intensity profiles and propagation of optical beams with bored helical phase. Opt. Express 2009, 17,

16244–16254. [CrossRef]
27. Baluyot, S.A.; Hermosa, N. Controllable rotation of optical beams with bored helical phases. Appl. Opt. 2010, 49, 673–677.

[CrossRef]
28. Xiao, M.; Zheng, S.; Shen, D.; Duley, W.W.; Zhou, Y.N. Laser-induced Joining of Nanoscale Materials: Processing, Properties, and

Applications. Nano Today 2020, 35, 100959. [CrossRef]
29. Omatsu, T.; Miyamoto, K.; Toyoda, K.; Morita, R.; Arita, Y.; Dholakia, K. A New Twist for Materials Science: The Formation of

Chiral Structures Using the Angular Momentum of Light. Adv. Optical Mater. 2019, 7, 1801672. [CrossRef]
30. Ni, J.; Wang, C.; Zhang, C.; Hu, Y.; Yang, L.; Lao, Z.; Xu, B.; Li, J.; Wu, D.; Chu, J. Three-dimensional chiral microstructures

fabricated by structured optical vortices in isotropic material. Light Sci. Appl. 2017, 6, e17011. [CrossRef]

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

https://doi.org/10.1364/OL.38.004919
https://www.ncbi.nlm.nih.gov/pubmed/24322166
https://doi.org/10.1007/s00339-010-5860-4
https://doi.org/10.1364/OL.36.002251
https://doi.org/10.1080/09500349608230675
https://doi.org/10.1364/OE.25.020098
https://doi.org/10.1126/science.1239936
https://www.ncbi.nlm.nih.gov/pubmed/23908234
https://doi.org/10.1016/0030-4018(95)00640-0
https://doi.org/10.1038/srep35341
https://doi.org/10.1016/j.optcom.2018.05.070
https://doi.org/10.3390/photonics8010024
https://doi.org/10.1364/OL.386223
https://doi.org/10.1364/OPEX.13.001749
https://doi.org/10.1016/j.optcom.2018.10.019
https://doi.org/10.1364/OL.38.000383
https://www.ncbi.nlm.nih.gov/pubmed/23381445
https://doi.org/10.1016/j.ijleo.2021.167124
https://doi.org/10.1016/j.ijleo.2021.167058
https://doi.org/10.1016/j.optlastec.2019.04.041
https://doi.org/10.1016/j.optcom.2019.124824
https://doi.org/10.1364/OE.17.016244
https://doi.org/10.1364/AO.49.000673
https://doi.org/10.1016/j.nantod.2020.100959
https://doi.org/10.1002/adom.201801672
https://doi.org/10.1038/lsa.2017.11

	Introduction 
	Controllable Helico-Conical Beams 
	Intensity Distributions at the Focal Plane 
	Conclusions 
	References

