Suppression of the Equivalent Magnetic Noise Caused by Electron Spin Polarization in a Xe Isotope Comagnetometer
Abstract
1. Introduction
2. Principle
3. Experimental Setup
4. Results and Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Meyer, D.; Larsen, M. Nuclear magnetic resonance gyro for inertial navigation. Gyroscopy Navig. 2014, 5, 75–82. [Google Scholar] [CrossRef]
- Korver, A.; Thrasher, D.; Bulatowicz, M.; Walker, T. Synchronous spin-exchange optical pumping. Phys. Rev. Lett. 2015, 115, 253001. [Google Scholar] [CrossRef] [PubMed]
- Walker, T.; Larsen, M. Spin-exchange-pumped nmr gyros. In Advances in Atomic, Molecular, and Optical Physics; Elsevier: Amsterdam, The Netherlands, 2016; pp. 373–401. [Google Scholar]
- Afach, S.; Buchler, B.; Budker, D.; Dailey, C.; Derevianko, A.; Dumont, V.; Figueroa, N.; Gerhardt, I.; Grujic, Z.; Guo, H.; et al. Search for topological defect dark matter with a global network of optical magnetometers. Nat. Phys. 2021, 17, 1396–1401. [Google Scholar] [CrossRef] [PubMed]
- Jiang, M.; Su, H.; Garcon, A.; Peng, X.; Budker, D. Search for axion-like dark matter with spin-based amplifiers. Nat. Phys. 2021, 17, 1402–1407. [Google Scholar] [CrossRef]
- Jackson, D.; Afach, S.; Aybas, D.; Blanchard, J.; Budker, D.; Centers, G.; Engler, M.; Figueroa, N.; Garcon, A.; Graham, P.; et al. Overview of the cosmic axion spin precession experiment. In Microwave Cavities and Detectors for Axion Research; Springer: Berlin/Heidelberg, Germany, 2020; pp. 105–121. [Google Scholar]
- Bevan, D.; Bulatowicz, M.; Clark, P.; Flicker, J.; Griffith, R.; Larsen, M.; Luengo-Kovac, M.; Pavell, J.; Rothballer, A.; Sakaida, D. Nuclear magnetic resonance gyroscope: Developing a primary otation sensor. In Proceedings of the 2018 IEEE International Symposium on Inertial Sensors and Systems (INERTIAL), Lake Como, Italy, 26–29 March 2018; pp. 1–2. [Google Scholar]
- Cipolletti, R.; Riedrich-Moeller, J.; Fuchs, T.; Wickenbrock, A.; Budker, D. Modeling of the transient behavior of a nuclear magnetic resonance gyroscope. In Proceedings of the 2021 IEEE Sensors, Sydney, Australia, 31 October–3 November 2021; pp. 1–4. [Google Scholar]
- Hao, C.; Yuan, C.; Liu, S.; Sheng, D. Herriott-cavity-assisted closed-loop Xe isotope comagnetometer. Phys. Rev. A 2021, 103, 053523. [Google Scholar] [CrossRef]
- Lee, S.; Yim, S.; Kim, T.; Kim, Z.; Shim, K. Lock-in-detection in 87Rb–129Xe/131Xe atom spin gyroscopes. J. Phys. B-At. Mol. Opt. Phys. 2020, 53, 035502. [Google Scholar] [CrossRef]
- Zhang, K.; Zhao, N.; Wang, Y. Closed-loop nuclear magnetic resonance gyroscope based on Rb-Xe. Sci. Rep. 2020, 10, 1–7. [Google Scholar] [CrossRef]
- Petrov, V.; Pazgalev, A.; Vershovskii, A. Isotope shift of nuclear magnetic resonances in 129Xe and 131Xe caused by spin-exchange pumping by alkali metal atoms. IEEE Sens. J. 2019, 20, 760–766. [Google Scholar] [CrossRef]
- Bulatowicz, M.; Griffith, R.; Larsen, M.; Mirijanian, J.; Fu, C.; Smith, E.; Snow, W.; Yan, H.; Walker, T. Laboratory search for a long-range t-odd, p-odd interaction from axionlike particles using dual-species nuclear magnetic resonance with polarized 129Xe and 131Xe gas. Phys. Rev. Lett. 2013, 111, 102001. [Google Scholar] [CrossRef]
- Liu, X.; Luo, H.; Qu, T.; Yang, K.; Ding, Z. Measuring the spin polarization of alkali-metal atoms using nuclear magnetic resonance frequency shifts of noble gases. AIP Adv. 2015, 5, 107119. [Google Scholar] [CrossRef]
- Jia, Y.; Liu, Z.; Zhou, B.; Liang, X.; Wu, W.; Peng, J.; Ding, M.; Zhai, Y.; Fang, J. Pump beam influence on spin polarization homogeneity in the nuclear magnetic resonance gyroscope. J. Phys. D-Appl. Phys. 2019, 52, 355001. [Google Scholar]
- Jia, Y.; Liu, Z.; Chai, Z.; Liang, X.; Wu, W. The optimization and stabilization of pump light frequency in the minimized atomic magnetometer. IEEE Trans. Instrum. Meas. 2021, 70, 1–9. [Google Scholar] [CrossRef]
- Dudzik, G.; Rzepka, J.; Abramski, K. Polarization switching detection method using a ferroelectric liquid crystal for dichroic atomic vapor laser lock frequency stabilization techniques. Appl. Opt. 2015, 54, 2806–2813. [Google Scholar] [CrossRef] [PubMed]
- Huang, J.; Fan, W.; Wang, Z.; Yuan, L.; Zhang, K.; Pei, H.; Pang, H.; Quan, H. Analysis and suppression of the misalignment error for the pumping laser in the atomic comagnetometer. Opt. Express 2022, 30, 6374–6387. [Google Scholar] [CrossRef]
- Yin, Y.; Zhou, B.; Yin, K.; Wang, Y.; Tang, J.; Ye, M.; Ning, X.; Han, B. The influence of temperature and modulated magnetic field on the transmission intensity of atomic magnetometer. J. Phys. D-Appl. Phys. 2021, 54, 485001. [Google Scholar] [CrossRef]
- Zhang, S.; Lu, J.; Ye, M.; Zhou, Y.; Yin, K.; Lu, F.; Yan, Y.; Zhai, Y. Optimal operating temperature of miniaturized optically pumped magnetometers. IEEE Trans. Instrum. Meas. 2022, 71, 1–7. [Google Scholar] [CrossRef]
- Lee, W.; Lucivero, V.; Romalis, M.; Limes, M.; Foley, E.; Kornack, T. Heading errors in all-optical alkali-metal-vapor magnetometers in geomagnetic fields. Phys. Rev. A 2021, 103, 063103. [Google Scholar] [CrossRef]
- Grebenkov, D. Nmr survey of reflected brownian motion. Rev. Mod. Phys. 2007, 79, 1077. [Google Scholar] [CrossRef]
- Walker, T.; Happer, W. Spin-exchange optical pumping of noble-gas nuclei. Rev. Mod. Phys. 1997, 69, 629. [Google Scholar] [CrossRef]
- Ma, Z.; Sorte, E.; Saam, B. Collisional 3He and 129Xe frequency shifts in Rb–noble-gas mixtures. Phys. Rev. Lett. 2011, 106, 193005. [Google Scholar] [CrossRef]
- Seltzer, S. Developments in Alkali-Metal Atomic Magnetometry; Princeton University: Princeton, NJ, USA, 2008. [Google Scholar]
- Happer, W.; Miron, E.; Schaefer, S.; Schreiber, D.; Van Wijngaarden, W.; Zeng, X. Polarization of the nuclear spins of noble-gas atoms by spin exchange with optically pumped alkali-metal atoms. Phys. Rev. A 1984, 29, 3092. [Google Scholar] [CrossRef]
- Kornack, T. A Test of CPT and Lorentz Symmetry Using a Potassium-Helium-3 Co-Magnetometer; Princeton University: Princeton, NJ, USA, 2005. [Google Scholar]
- Ding, Z.; Yuan, J.; Wang, Z.; Lu, G.; Luo, H. Optically pumped rubidium atomic magnetometer with elliptically polarized light. Optik 2016, 127, 5270–5273. [Google Scholar] [CrossRef]
- Schaefer, S.; Cates, G.; Chien, T.; Gonatas, D.; Happer, W.; Walker, T. Frequency shifts of the magnetic-resonance spectrum of mixtures of nuclear spin-polarized noble gases and vapors of spin-polarized alkali-metal atoms. Phys. Rev. A 1989, 39, 5613. [Google Scholar] [CrossRef] [PubMed]
- Yan, Y.; Lu, J.; Zhang, S.; Lu, F.; Yin, K.; Wang, K.; Zhou, B.; Liu, G. Three-axis closed-loop optically pumped magnetometer operated in the SERF regime. Opt. Express 2022, 30, 18300–18309. [Google Scholar] [CrossRef] [PubMed]
- Liu, X.; Chen, C.; Qu, T.; Yang, K.; Luo, H. Transverse spin relaxation and diffusion-constant measurements of spin-polarized 129Xe nuclei in the presence of a magnetic field gradient. Sci. Rep. 2016, 6, 1–8. [Google Scholar] [CrossRef] [PubMed]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wu, Z.; Chai, Z.; Xiao, L.; Liu, Z. Suppression of the Equivalent Magnetic Noise Caused by Electron Spin Polarization in a Xe Isotope Comagnetometer. Photonics 2023, 10, 423. https://doi.org/10.3390/photonics10040423
Wu Z, Chai Z, Xiao L, Liu Z. Suppression of the Equivalent Magnetic Noise Caused by Electron Spin Polarization in a Xe Isotope Comagnetometer. Photonics. 2023; 10(4):423. https://doi.org/10.3390/photonics10040423
Chicago/Turabian StyleWu, Zekun, Zhen Chai, Lan Xiao, and Zhanchao Liu. 2023. "Suppression of the Equivalent Magnetic Noise Caused by Electron Spin Polarization in a Xe Isotope Comagnetometer" Photonics 10, no. 4: 423. https://doi.org/10.3390/photonics10040423
APA StyleWu, Z., Chai, Z., Xiao, L., & Liu, Z. (2023). Suppression of the Equivalent Magnetic Noise Caused by Electron Spin Polarization in a Xe Isotope Comagnetometer. Photonics, 10(4), 423. https://doi.org/10.3390/photonics10040423