Triple-Wavelength Thulium-Doped Fiber Random Laser Based on Random Fiber Grating
Abstract
1. Introduction
2. Experimental Setup
3. Experimental Results and Discussion
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Turitsyn, S.K.; Babin, S.A.; El-Taher, A.E.; Harper, P.; Churkin, D.V.; Kablukov, S.I.; Ania-Castañón, J.D.; Karalekas, V.; Podivilov, E.V. Random distributed feedback fibre laser. Nat. Photon. 2010, 4, 231–235. [Google Scholar] [CrossRef]
- Wang, Z.N.; Rao, Y.J.; Wu, H.; Li, P.Y.; Jia, X.H.; Zhang, W.L. Long-distance fiber-optic point-sensingsystems based on random fiber lasers. Opt. Express 2012, 20, 17695–17700. [Google Scholar] [CrossRef] [PubMed]
- Redding, B.; Choma, M.A.; Cao, H. Speckle-free laser imaging using random laser illumination. Nat. Photon. 2012, 6, 355–359. [Google Scholar] [CrossRef]
- De Matos, C.J.S.; Menezes, L.D.S.; Brito-Silva, A.M.; Gamez, M.A.M.; Gomes, A.S.L.; Araujo, C.B.D. Random fiber laser. Phys. Rev. Lett. 2007, 99, 153903. [Google Scholar] [CrossRef] [PubMed]
- Gomes, A.S.L.; Moura, A.L.; de Araújo, C.B.; Raposo, E.P. Recent advances and applications of random lasers and random fiber lasers. Prog. Quantum Electron. 2021, 78, 100343. [Google Scholar] [CrossRef]
- Quan, X.; Ma, R.; Wu, H.; Bai, Z.Y.; Fan, D.Y.; Liu, J. Low threshold and high spectral purity 1.7 μm random fiber laser based on hybrid gain. Opt. Laser Technol. 2022, 155, 108410. [Google Scholar] [CrossRef]
- Wang, L.L.; Dong, X.Y.; Shum, P.P.; Su, H. Tunable erbium-doped fiber laser based on random distributed feedback. IEEE Photon. J. 2014, 6, 1501705. [Google Scholar]
- Aporta, I.; Perez-Herrera, R.A.; Quintela, M.A.; Lopez-Amo, M.; Lopez-Higuera, J.M. Tunable dual-wavelength random distributed feedback fiber laser with bidirectional pumping source. J. Lightw. Technol. 2016, 34, 4148–4153. [Google Scholar] [CrossRef]
- Jagannathan, S.; Ackerman, L.; Chen, W.; Yu, N.; Cavillon, M.; Tuggle, M.; Hawkins, T.W.; Ballato, J.; Dragic, P.D. Random lasing from optical fibers with phase separated glass cores. Opt. Express 2020, 28, 22049–22063. [Google Scholar] [CrossRef] [PubMed]
- Sugavanam, S.; Zulkifli, M.Z.; Churkin, D.V. Multi-wavelength erbium/Raman gain based random distributed feedback fiber laser. Laser Phys. 2015, 26, 15101. [Google Scholar] [CrossRef]
- Zhang, Y.; Ye, J.; Ma, X.Y.; Xu, J.M.; Song, J.X.; Yao, T.F.; Zhou, P. High power tunable multiwavelength random fiber laser at 1.3 μm waveband. Opt. Express 2021, 29, 5516–5524. [Google Scholar] [CrossRef] [PubMed]
- Zhang, L.; Xu, Y.P.; Gao, S.; Saxena, B.; Chen, L.; Bao, X.Y. Multiwavelength coherent Brillouin random fiber laser with ultrahigh optical signal-to-noise ratio. IEEE J. Sel. Top. Quantum Electron. 2017, 24, 0900308. [Google Scholar] [CrossRef]
- Tehranch, A.; Iezzi, V.L.; Kashyap, R. Power fluctuations and random lasing in multiwavelength Brillouin erbium-doped fiber lasers. J. Lightw. Technol. 2019, 37, 4439–4444. [Google Scholar] [CrossRef]
- Zhou, Z.C.; Chen, L.; Bao, X.Y. High efficiency Brillouin random fiber laser with replica symmetry breaking enabled by random fiber grating. Opt. Express 2021, 29, 6532–6541. [Google Scholar] [CrossRef] [PubMed]
- Huang, C.Q.; Dong, X.Y.; Zhang, N.; Zhang, S.Y.; Shum, P.P. Multiwavelength Brillouin-Erbium random fiber laser incorporating a chirped fiber Bragg grating. IEEE J. Sel. Top. Quantum Electron. 2014, 20, 294–298. [Google Scholar] [CrossRef]
- Saleh, S.; Cholan, N.A.; Sulaiman, A.H.; Mahdi, M.A. Stable multiwavelength erbium-doped random fiber laser. IEEE J. Sel. Top. Quantum Electron. 2017, 24, 0902106. [Google Scholar] [CrossRef]
- Wang, L.L.; Dong, X.Y.; Shum, P.P.; Liu, X.H.; Su, H.B. Random laser with multiphase-shifted Bragg grating in Er/Yb-codoped fiber. J. Lightw. Technol. 2015, 33, 95–99. [Google Scholar] [CrossRef]
- Zhang, A.L.; Hao, L.Y.; Geng, B.; Li, D. Investigation of narrow band random fiber ring laser based on random phase-shift Bragg grating. Opt. Laser Technol. 2019, 116, 1–6. [Google Scholar] [CrossRef]
- Miao, S.J.; Zhang, W.T.; Song, Y. Random Bragg-gratings-based narrow linewidth random fiber laser with a π-phase-shifted FBG. Chin. Opt. Lett. 2019, 17, 090605. [Google Scholar] [CrossRef]
- Popov, S.M.; Butov, O.V.; Bazakutsa, A.P.; Vyatkin, M.Y.; Chamorovskii, Y.K.; Fotiadi, A.A. Random lasing in a short Er-doped artificial Rayleigh fiber. Results Phys. 2020, 16, 102868. [Google Scholar] [CrossRef]
- Gagné, M.; Kashyap, R. Random fiber Bragg grating Raman fiber laser. Opt. Lett. 2014, 39, 2755–2758. [Google Scholar] [CrossRef] [PubMed]
- Li, Y.; Lu, P.; Baset, F.; Ou, Z.Y.; Song, J.; Alshehri, A.; Bhardwaj, V.R.; Bao, X.Y. Narrow linewidth low frequency noise Er-doped fiber ring laser based on femtosecond laser induced random feedback. Appl. Phys. Lett. 2014, 105, 101105. [Google Scholar] [CrossRef]
- Pierce, M.C.; Jackson, S.D.; Dickinson, M.R.; King, T.A. Laser-tissue interaction with a high-power 2-μm fiber laser: Preliminary studies with soft tissue. Las. Surg. Med. 1999, 25, 407–413. [Google Scholar] [CrossRef]
- Tendean, M.; Mambu, T.D.B.; Tjandra, F.; Panelewen, J. The use of thulium-doped fiber laser (TDFL) 1940 nm as an energy device in liver parenchyma resection, a-pilot-study in Indonesia. Ann. Med. Surg. 2020, 60, 491–497. [Google Scholar] [CrossRef] [PubMed]
- Ahmad, N.A.; Dahlan, S.H.; Cholan, N.A.; Ahmad, H.; Amiri, I.S.; Tiu, Z.C. Dual-wavelength thulium fluoride fiber laser based on SMF-TMSIF-SMF interferometer as potential source for microwave generation in 100-GHz region. IEEE J. Sel. Top. Quantum Electron. 2018, 54, 1600207. [Google Scholar] [CrossRef]
- Taczak, T.M.; Killinger, D.K. Development of a tunable, narrow-linewidth, cw 2.066-μm Ho:YLF laser for remote sensing of atmospheric CO2 and H2O. Appl. Opt. 1998, 37, 8460–8476. [Google Scholar] [CrossRef]
- Churkin, D.V.; Sugavanam, S.; Vatnik, I.D.; Wang, Z.N.; Podivilov, E.V.; Babin, S.A.; Rao, Y.J.; Turitsyn, S.K. Recent advances in fundamentals and applications of random fiber lasers. Adv. Opt. Photon. 2015, 7, 516–569. [Google Scholar] [CrossRef]
- Tang, Y.L.; Xu, J.Q. A random Q-switched fiber laser. Sci. Rep. 2015, 5, 9338. [Google Scholar] [CrossRef]
- Ma, R.; Liu, J.; Fang, Z.Q.; Fan, D.Y. Mid-infrared random fiber laser assisted by the passive feedback. J. Lightw. Technol. 2021, 39, 5089–5095. [Google Scholar] [CrossRef]
- Jin, X.X.; Lou, Z.K.; Zhang, H.W.; Xu, J.M.; Zhou, P.; Liu, Z.J. Random distributed feedback fiber laser at 2.1 μm. Opt. Lett. 2016, 41, 4923–4926. [Google Scholar] [CrossRef]
- Cumberland, B.A.; Popov, S.V.; Taylor, J.R.; Medvedkov, O.I.; Vasiliev, S.A.; Dianov, E.M. 2.1 μm continuous-wave Raman laser in GeO2 fiber. Opt. Lett. 2007, 32, 1848–1850. [Google Scholar] [CrossRef] [PubMed]
- Jiang, H.W.; Zhang, L.; Feng, Y. Silica-based fiber Raman laser at >2.4 μm. Opt. Lett. 2015, 40, 3249–3252. [Google Scholar] [CrossRef] [PubMed]
- Dianov, E.M.; Bufetov, I.A.; Mashinsky, V.M.; Neustruev, V.B.; Medvedkov, O.I.; Shubin, A.V.; Melkumov, M.A.; GurYanov, A.N.; Khopin, V.F.; Yashkov, M.V. Raman fibre lasers emitting at a wavelength above 2 μm. Quant. Electron. 2004, 34, 695–697. [Google Scholar] [CrossRef]
- Skvortsov, M.I.; Wolf, A.A.; Dostovalov, A.V.; Egorova, O.N.; Semjonov, S.L.; Babin, S.A. Narrow-linewidth Er-doped fiber lasers with random distributed feedback provided by artificial rayleigh scattering. J. Lightw. Technol. 2022, 40, 1829–1835. [Google Scholar] [CrossRef]
- Ravet, G.; Fotiadi, A.A.; Blondel, M.; Megret, P. Passive Q-switching in all-fibre Raman laser with distributed Rayleigh feedback. Electron. Lett. 2004, 40, 528–529. [Google Scholar] [CrossRef]
- Fotiadi, A.A.; Kiyan, R.V. Cooperative stimulated Brillouin and Rayleigh backscattering process in optical fiber. Opt. Lett. 1998, 23, 1805–1807. [Google Scholar] [CrossRef]
- Zhang, W.L.; Li, S.W.; Ma, R.; Rao, Y.J.; Zhu, Y.Y.; Wang, Z.N.; Jia, X.H.; Li, J. Random distributed feedback fiber laser based on combination of Er-doped fiber and single-mode fiber. IEEE J. Sel. Top. Quantum Electron. 2015, 21, 0900406. [Google Scholar]
- Fallert, J.; Dietz, R.J.B.; Sartor, J.; Schneider, D.; Klingshirn, C.; Kalt, H. Co-existence of strongly and weakly localized random laser modes. Nat. Photon. 2009, 3, 279–282. [Google Scholar] [CrossRef]
- Fotiadi, A.A. An incoherent fiber laser. Nat. Photon. 2010, 4, 204–205. [Google Scholar] [CrossRef]
- Peng, M.; Bao, X.Y.; Chen, L. Observation of narrow linewidth spikes in the coherent Brillouin random fiber laser. Opt. Lett. 2013, 38, 1866–1868. [Google Scholar] [CrossRef]
- Yang, J.L.; Zhong, H.Z.; Zhang, S.Y.; Fan, D.Y. Theoretical characterization of the ultra-broadband gain spectra at ∼1600–2100 nm from thulium-doped fiber amplifiers. IEEE Photon. J. 2016, 8, 1400310. [Google Scholar] [CrossRef]
- Li, Z.; Jung, Y.; Daniel, J.M.O.; Simakov, N.; Tokurakawa, M.; Shardlow, P.C.; Jain, D.; Sahu, J.K.; Heidt, A.M.; Clarkson, W.A.; et al. Exploiting the short wavelength gain of silica-based thulium-doped fiber amplifiers. Opt. Lett. 2016, 41, 2197–2200. [Google Scholar] [CrossRef]
- Upadhyaya, B.N.; Kuruvilla, A.; Chakravarty, U.; Shenoy, M.R.; Thyagarajan, K.; Oak, S.M. Effect of laser linewidth and fiber length on self-pulsing dynamics and output stabilization of single-mode Yb-doped double-clad fiber laser. Appl. Opt. 2010, 49, 2316–2325. [Google Scholar] [CrossRef] [PubMed]
- Tang, Y.L.; Xu, J.Q. Effects of excited-state absorption on self-pulsing in Tm3+-doped fiber lasers. J. Opt. Soc. Am. B 2010, 27, 179–186. [Google Scholar] [CrossRef]
- Jackson, S.D.; King, T.A. Dynamics of the output of heavily Tm-doped double-clad silica fiber lasers. J. Opt. Soc. Am. B 1999, 16, 2178–2188. [Google Scholar] [CrossRef]
- Marcuse, D. Pulsing behavior of a three-level laser with saturable absorber. IEEE J. Quantum Electron. 1993, 29, 2390–2396. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhou, L.; Hu, Y.; Zheng, W.; Xu, P.; Gao, Z.; Dong, X. Triple-Wavelength Thulium-Doped Fiber Random Laser Based on Random Fiber Grating. Photonics 2023, 10, 355. https://doi.org/10.3390/photonics10040355
Zhou L, Hu Y, Zheng W, Xu P, Gao Z, Dong X. Triple-Wavelength Thulium-Doped Fiber Random Laser Based on Random Fiber Grating. Photonics. 2023; 10(4):355. https://doi.org/10.3390/photonics10040355
Chicago/Turabian StyleZhou, Lewen, Yaozong Hu, Wenlong Zheng, Pengbai Xu, Zhensen Gao, and Xinyong Dong. 2023. "Triple-Wavelength Thulium-Doped Fiber Random Laser Based on Random Fiber Grating" Photonics 10, no. 4: 355. https://doi.org/10.3390/photonics10040355
APA StyleZhou, L., Hu, Y., Zheng, W., Xu, P., Gao, Z., & Dong, X. (2023). Triple-Wavelength Thulium-Doped Fiber Random Laser Based on Random Fiber Grating. Photonics, 10(4), 355. https://doi.org/10.3390/photonics10040355