All-Monolithically Integrated Self-Scanning Addressable VCSEL Array for 3D Sensing
Abstract
:1. Introduction
2. Materials and Methods
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Dalir, H.; Koyama, F. Bandwidth enhancement of single-mode VCSEL with lateral optical feedback of slow light. IEICE Electron. Exp. 2011, 8, 1075–1081. [Google Scholar] [CrossRef] [Green Version]
- Kondo, T.; Takeda, K.; Otoma, H.; Murakami, A.; Sakurai, J.; Nakayama, H.; Gu, X.; Koyama, F. Developments of VCSELs for printers and optical communications at Fuji Xerox. In Vertical-Cavity Surface-Emitting Lasers XX; SPIE: Bellingham, WA, USA, 2016; Volume 9766, pp. 51–59. [Google Scholar]
- Seurin, J.F.; Ghosh, C.L.; Khalfin, V.; Miglo, A.; Xu, G.; Wynn, J.D.; Pradhan, P.; D’Asaro, L.A. High-power high efficiency 2D VCSEL arrays. In Vertical-Cavity Surface-Emitting Lasers XII; SPIE: Bellingham, WA, USA, 2008; Volume 6908, pp. 45–58. [Google Scholar]
- Seurin, J.F.; Zhou, D.; Xu, G.; Miglo, A.; Li, D.; Chen, T.; Guo, B.; Ghosh, C. High-efficiency VCSEL arrays for illumination and sensing in consumer applications. In Vertical-Cavity Surface-Emitting Lasers XX; SPIE: Bellingham, WA, USA, 2016; Volume 9766, pp. 60–68. [Google Scholar]
- Grabherr, M. New applications boost VCSEL quantities: Recent developments at Philips. In Vertical-Cavity Surface-Emitting Lasers XIX; SPIE: Bellingham, WA, USA, 2015; Volume 9381, p. 938102. [Google Scholar]
- Moench, H.; Carpaij, M.; Gerlach, P.; Groneborn, S.; Gudde, R.; Hellmig, J.; Kolb, J.; van der Lee, A. VCSEL-based sensors for distance and velocity. In Vertical-Cavity Surface-Emitting Lasers XX; SPIE: Bellingham, WA, USA, 2016; Volume 9766, pp. 40–50. [Google Scholar]
- Warren, M.E.; Podva, D.; Dacha, P.; Block, M.K.; Helms, C.J.; Maynard, J. Low-divergence high-power VCSEL arrays for lidar application. In Vertical-Cavity Surface-Emitting Lasers XXII; SPIE: Bellingham, WA, USA, 2018; Volume 10552, pp. 72–81. [Google Scholar]
- Bamji, C.S.; Mehta, S.; Thompson, B.; Elkhatib, T.; Wurster, S.; Akkaya, O.; Payne, A.; Godbaz, J.; Fenton, M.; Rajasekaran, V.; et al. 1Mpixel 65 nm BSI 320 MHz demodulated TOF image sensor with 3.5 μm global shutter pixels and analog binning. In Proceedings of the 2018 IEEE International Solid-State Circuits Conference—(ISSCC), San Francisco, CA, USA, 11–15 February 2018; pp. 94–96. [Google Scholar]
- Kato, Y.; Sano, T.; Moriyama, Y.; Maeda, S.; Yamazaki, T.; Nose, A.; Shiina, K.; Yasu, Y.; Van der Tempel, W.; Ercana, A.; et al. 320 × 240 back-illuminated 10-μm CAPD pixels for high-speed modulation time-of-flight CMOS image sensor. IEEE J. Solid-State. Circuits 2018, 53, 1071–1078. [Google Scholar] [CrossRef]
- Shirakawa, Y.; Yasutomi, K.; Kagawa, K.; Aoyama, S.; Kawahito, S. An 8-Tap CMOS lock-in pixel image sensor for short-pulse time-of-flight measurements. Sensors 2020, 20, 1040. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tontini, A.; Gasparini, L.; Perenzoni, M. Numerical model of SPAD-based direct time-of-flight flash lidar CMOS image sensors. Sensors 2020, 20, 5203. [Google Scholar] [CrossRef] [PubMed]
- Foix, S.; Alenya, G.; Torras, C. Lock-in time-of-flight (ToF) cameras: A survey. IEEE Sens. J. 2011, 11, 1917–1926. [Google Scholar] [CrossRef] [Green Version]
- Naik, N.; Kadambi, A.; Rhemann, C.; Izadi, S.; Raskar, R.; Kang, S.B. A light transport model for mitigating multipath interference in time-of-flight sensors. In Proceedings of the 2015 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Boston, MA, USA, 7–12 June 2015; pp. 73–81. [Google Scholar]
- Mure-Dubois, J.; Hügli, H. Real-time scattering compensation for time-of-flight camera. In Proceedings of the Proceedings of the ICVS Workshop on Camera Calibration Methods for Computer Vision Systems, Bielefeld, Germany, 21–24 March 2007. [Google Scholar]
- Lange, R.; Seitz, P. Solid-state time-of-flight range camera. IEEE J. Quantum Electron. 2001, 37, 390–397. [Google Scholar] [CrossRef] [Green Version]
- Kondo, T. All monolithically integrated self-scanning vertical-cavity surface-emitting array. In Proceedings of the 2018 IEEE International Semiconductor Laser Conference (ISLC), Santa Fe, NM, USA, 16–19 September 2018; pp. 1–2. [Google Scholar]
- Kondo, T.; Kitsunai, M.; Komagata, S.; Ohno, S.; Usami, H. Temperature characteristics of all-monolithically integrated self-scanning VCSEL array. In Vertical-Cavity Surface-Emitting Lasers XXIII; SPIE: Bellingham, WA, USA, 2019; Volume 10938, pp. 34–43. [Google Scholar]
- Kuijk, M.; Heremans, P.L.; Borghs, G.; Vounckx, R. Depleted double-heterojunction optical thyristor. Appl. Phys. Lett. 1994, 64, 2073–2075. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kondo, T.; Hayakawa, J.; Iguchi, D.; Sakita, T.; Higuchi, T.; Takeyama, K.; Ohno, S.; Murata, M.; Usami, H. All-Monolithically Integrated Self-Scanning Addressable VCSEL Array for 3D Sensing. Photonics 2023, 10, 304. https://doi.org/10.3390/photonics10030304
Kondo T, Hayakawa J, Iguchi D, Sakita T, Higuchi T, Takeyama K, Ohno S, Murata M, Usami H. All-Monolithically Integrated Self-Scanning Addressable VCSEL Array for 3D Sensing. Photonics. 2023; 10(3):304. https://doi.org/10.3390/photonics10030304
Chicago/Turabian StyleKondo, Takashi, Junichiro Hayakawa, Daisuke Iguchi, Tomoaki Sakita, Takafumi Higuchi, Kei Takeyama, Seiji Ohno, Michiaki Murata, and Hiroyuki Usami. 2023. "All-Monolithically Integrated Self-Scanning Addressable VCSEL Array for 3D Sensing" Photonics 10, no. 3: 304. https://doi.org/10.3390/photonics10030304
APA StyleKondo, T., Hayakawa, J., Iguchi, D., Sakita, T., Higuchi, T., Takeyama, K., Ohno, S., Murata, M., & Usami, H. (2023). All-Monolithically Integrated Self-Scanning Addressable VCSEL Array for 3D Sensing. Photonics, 10(3), 304. https://doi.org/10.3390/photonics10030304