A High-Temperature Multipoint Hydrogen Sensor Using an Intrinsic Fabry–Perot Interferometer in Optical Fiber
Abstract
1. Introduction
2. Materials and Methods
3. Results
4. Discussion and Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Monzón-Hernández, D.; Luna-Moreno, D.; Martínez-Escobar, D. Fast response fiber optic hydrogen sensor based on palladium and gold nano-layers. Sens. Actuators B 2009, 136, 562–566. [Google Scholar] [CrossRef]
- Cao, R.; Wu, J.; Liang, G.; Ohodnicki, P.R.; Chen, K.P. Functionalized PdAu Alloy on Nanocones Fabricated on Optical Fibers for Hydrogen Sensing. IEEE Sens. J. 2019, 20, 1922–1927. [Google Scholar] [CrossRef]
- Dai, J.; Yang, M.; Yu, X.; Cao, K.; Liao, J. Greatly etched fiber Bragg grating hydrogen sensor with Pd/Ni composite film as sensing material. Sens. Actuators B 2012, 174, 253–257. [Google Scholar] [CrossRef]
- Yang, M.; Yang, Z.; Dai, J.; Zhang, D. Fiber optic hydrogen sensors with sol–gel WO3 coatings. Sens. Actuators B 2012, 166, 632–636. [Google Scholar] [CrossRef]
- Fan, H.; Ma, W.; Chen, L.; Bao, X. Ultracompact twisted silica taper for 20 kHz to 94 MHz ultrasound sensing. Opt. Lett. 2020, 45, 3889–3892. [Google Scholar] [CrossRef] [PubMed]
- Fan, H.; Chen, L.; Bao, X. Chalcogenide microfiber-assisted silica microfiber for ultrasound detection. Opt. Lett. 2020, 45, 1128–1131. [Google Scholar] [CrossRef]
- Yu, Z.; Jin, L.; Sun, L.; Li, J.; Ran, Y.; Guan, B.O. Highly sensitive fiber taper interferometric hydrogen sensors. IEEE Photonics J. 2015, 8, 1–9. [Google Scholar] [CrossRef]
- Yan, A.; Chen, R.; Zaghloul, M.; Poole, Z.L.; Ohodnicki, P.; Chen, K.P. Sapphire fiber optical hydrogen sensors for high-temperature environments. IEEE Photonics Technol. Lett. 2015, 28, 47–50. [Google Scholar] [CrossRef]
- Wu, J.; Wang, M.; Cao, R.; Carpenter, D.; Zheng, G.; Rountree, S.D.; Li, M.; Chen, K.P. Multiplexed Fiber Bragg Grating Sensors for In-Pile Measurements in Nuclear Reactor Cores. In Proceedings of the 27th International Conference on Optical Fiber Sensors, Alexandria, VA, USA, 29 August–2 September 2022. [Google Scholar]
- Wang, Y.; Yang, M.; Zhang, G.; Dai, J.; Zhang, Y.; Zhuang, Z.; Hu, W. Fiber optic hydrogen sensor based on fabry–perot interferometer coated with Sol-Gel Pt/WO3 coating. J. Light. Technol. 2015, 33, 2530–2534. [Google Scholar] [CrossRef]
- Zhang, G.; Yang, M.; Wang, Y. Optical fiber-tip Fabry–Perot interferometer for hydrogen sensing. Opt. Commun. 2014, 329, 34–37. [Google Scholar] [CrossRef]
- Yang, Z.; Zhang, M.; Liao, Y.; Tian, Q.; Li, Q.; Zhang, Y.; Zhuang, Z. Extrinsic Fabry–Perot interferometric optical fiber hydrogen detection system. Appl. Opt. 2010, 49, 2736–2740. [Google Scholar] [CrossRef]
- Wang, M.; Zaghloul, M.A.; Huang, S.; Yan, A.; Li, S.; Zou, R.; Ohodnicki, P.; Buric, M.; Li, M.J.; Carpenter, D.; et al. Ultrafast laser enhanced Rayleigh backscattering on silica fiber for distributed sensing under harsh environment. In Proceedings of the Conference on Lasers and Electro-Optics (CLEO), San Jose, CA, USA, 13–18 May 2018. [Google Scholar]
- Cao, R.; Yang, Y.; Wang, M.; Yi, X.; Wu, J.; Huang, S.; Chen, K.P. Multiplexable intrinsic Fabry–Perot interferometric fiber sensors for multipoint hydrogen gas monitoring. Opt. Lett. 2020, 45, 3163–3166. [Google Scholar] [CrossRef] [PubMed]
- Wu, J.; Wang, M.; Zhao, K.; Huang, S.; Zaghloul, M.A.; Cao, R.; Carpenter, D.; Zheng, G.; Rountree, S.D.; Chen, K.P. Distributed Fiber Sensors with High Spatial Resolution in Extreme Radiation Environments in Nuclear Reactor Cores. J. Light. Technol. 2021, 39, 4873. [Google Scholar] [CrossRef]
- Yu, Z.; Wang, A. Fast white light interferometry demodulation algorithm for low-finesse Fabry–Pérot sensors. IEEE Photonics Technol. Lett. 2015, 27, 817–820. [Google Scholar] [CrossRef]
- Yang, Y.; Ma, X.; Chen, K.; Wang, E.; Yu, Z.; Yu, Q. A high-resolution dynamic fiber-optic inclinometer. Sens. Actuators A 2018, 283, 305–312. [Google Scholar] [CrossRef]
- Eastman, J.; Thompson, L.; Kestel, B.J. Narrowing of the palladium-hydrogen miscibility gap in nanocrystalline palladium. Phys. Rev. B 1993, 48, 84. [Google Scholar] [CrossRef] [PubMed]
- De Ninno, A.; Violante, V.; La Barbera, A. Consequences of lattice expansive strain gradients on hydrogen loading in palladium. Phys. Rev. B 1997, 56, 2417. [Google Scholar] [CrossRef]
- Poole, Z.L.; Ohodnicki, P.; Chen, R.; Lin, Y.; Chen, K.P. Engineering metal oxide nanostructures for the fiber optic sensor platform. Opt. Express 2014, 22, 2665–2674. [Google Scholar] [CrossRef]
- Cao, R.; Ding, H.; Kim, K.J.; Peng, Z.; Wu, J.; Culp, J.T.; Ohodnicki, P.R.; Beckman, E.; Chen, K.P. Metal-organic framework functionalized polymer coating for fiber optical methane sensors. Sens. Actuators B 2020, 324, 128627. [Google Scholar] [CrossRef]
- Cao, R.; Ding, H.; Peng, Z.; Kim, K.J.; Ohodnicki, P.R.; Yan, A.; Chen, K.P. Fiber optical sensor for methane detection based on metal-organic framework/silicone polymer coating. In Proceedings of the Conference on Lasers and Electro-Optics (CLEO), San Jose, CA, USA, 13–18 May 2018. [Google Scholar]
- Wang, M.; Yang, Y.; Huang, S.; Wu, J.; Zhao, K.; Li, Y.; Peng, Z.; Zou, R.; Lan, H.; Ohodnicki, P.R.; et al. Multiplexable high-temperature stable and low-loss intrinsic Fabry-Perot in-fiber sensors through nanograting engineering. Opt. Express 2020, 28, 20225–20235. [Google Scholar] [CrossRef]
- Li, J.; Hou, C.; Huo, D.; Yang, M.; Fa, H.B.; Yang, P. Development of a colorimetric sensor array for the discrimination of aldehydes. Sens. Actuators B 2014, 196, 10–17. [Google Scholar] [CrossRef]
- Paixão, T.; Araujo, F.; Antunes, P. High-resolution strain and temperature Fabry-Perot interferometer sensor based on Vernier effect and produced by a femtosecond laser. In Proceedings of the Seventh European Workshop on Optical Fibre Sensors, Limassol, Cyprus, 1–4 October 2019. [Google Scholar]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Cao, R.; Wu, J.; Yang, Y.; Wang, M.; Li, Y.; Chen, K.P. A High-Temperature Multipoint Hydrogen Sensor Using an Intrinsic Fabry–Perot Interferometer in Optical Fiber. Photonics 2023, 10, 284. https://doi.org/10.3390/photonics10030284
Cao R, Wu J, Yang Y, Wang M, Li Y, Chen KP. A High-Temperature Multipoint Hydrogen Sensor Using an Intrinsic Fabry–Perot Interferometer in Optical Fiber. Photonics. 2023; 10(3):284. https://doi.org/10.3390/photonics10030284
Chicago/Turabian StyleCao, Rongtao, Jingyu Wu, Yang Yang, Mohan Wang, Yuqi Li, and Kevin P. Chen. 2023. "A High-Temperature Multipoint Hydrogen Sensor Using an Intrinsic Fabry–Perot Interferometer in Optical Fiber" Photonics 10, no. 3: 284. https://doi.org/10.3390/photonics10030284
APA StyleCao, R., Wu, J., Yang, Y., Wang, M., Li, Y., & Chen, K. P. (2023). A High-Temperature Multipoint Hydrogen Sensor Using an Intrinsic Fabry–Perot Interferometer in Optical Fiber. Photonics, 10(3), 284. https://doi.org/10.3390/photonics10030284