Local Field Enhancement Due to the Edge States of Nanoplasmonic Crystal
Abstract
:1. Introduction
2. Structure Design
3. Results and Discussion
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Sarychev, A.K.; Ivanov, A.; Lagarkov, A.; Barbillon, G. Light concentration by metal-dielectric micro resonators for SERS sensing. Materials 2019, 12, 103. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kukushkin, V.; Grishina, Y.V.; Egorov, S.V.; Solov’Ev, V.V.; Kukushkin, I.V. Combined dielectric and plasmon resonance for giant enhancement of Raman scattering. JETP Lett. 2016, 103, 508512. [Google Scholar] [CrossRef]
- Lagarkov, A.; Budashov, I.; Chistyaev, V.; Ezhov, A.; Fedyanin, A.; Ivanov, A.; Kurochkin, I.; Kosolobov, S.; Latyshev, A.; Nasimov, D.; et al. SERS-active dielectric metamaterials based on periodic nanostructures. Opt. Express 2016, 24, 7133–7150. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Le Ru, E.C.; Blackie, E.; Meyer, M.; Etchegoin, P.G. Surface enhanced Raman scattering enhancement factors: A comprehensive study. J. Phys. Chem. C 2007, 111, 13794. [Google Scholar] [CrossRef]
- Fedotova, Y.; Kukushkin, V.; Solovyev, V.V.; Kukushkin, I.V. Spoof plasmons enable giant Raman scattering enhancement in near-infrared region. Opt. Express 2019, 27, 32578–32586. [Google Scholar] [CrossRef] [PubMed]
- Kukushkin, V.I.; Vankov, A.B.; Kukushkin, I.V. Long-range manifestation of surface-enhanced Raman scattering. JETP Lett. 2013, 98, 64–69. [Google Scholar] [CrossRef] [Green Version]
- Jin, B.; Argyropoulos, C. Enhanced four-wave mixing with nonlinear plasmonic metasurfaces. Sci. Rep. 2016, 6, 28746. [Google Scholar] [CrossRef] [Green Version]
- Smirnova, D.; Leykam, D.; Chong, Y.; Kivshar, Y. Nonlinear topological photonics. Appl. Phys. Rev. 2020, 7, 021306. [Google Scholar] [CrossRef]
- Fedotova, A.; Younesi, M.; Sautter, J.; Vaskin, A.; Lochner, F.J.F.; Steinert, M.; Geiss, R.; Pertsch, T.; Staude, I.; Setzpfandt, F. Second-harmonic generation in resonant nonlinear metasurfaces based on lithium niobate. Nano Lett. 2020, 20, 8608–8614. [Google Scholar] [CrossRef]
- Smirnova, D.; Kruk, S.; Leykam, D.; Melik-Gaykazyan, E.; Choi, D.-Y.; Kivshar, Y. Third-harmonic generation in photonic topological metasurfaces. Phys. Rev. Lett. 2019, 123, 103901. [Google Scholar] [CrossRef] [Green Version]
- Yuan, Q.; Gu, L.; Fang, L.; Gan, X.; Chen, Z.; Zhao, J. Giant enhancement of nonlinear harmonic generation in a silicon topological photonic crystal nanocavity chain. Laser Photonics Rev. 2022, 16, 2100269. [Google Scholar] [CrossRef]
- Butet, J.; Brevet, P.-F.; Martin, O.J.F. Optical second harmonic generation in plasmonic nanostructures: From fundamental principles to advanced applications. ACS Nano 2015, 9, 10545–10562. [Google Scholar] [CrossRef]
- Bandres, M.A.; Wittek, S.; Harari, G.; Parto, M.; Ren, J.; Segev, M.; Christodoulides, D.N.; Khajavikhan, M. Topological insulator laser: Experiments. Science 2018, 359, eaar4005. [Google Scholar] [CrossRef] [Green Version]
- You, J.W.; Lan, Z.; Panoiu, N.C. Four-wave mixing of topological edge plasmons in graphene metasurfaces. Sci. Adv. 2020, 6, eaaz3910. [Google Scholar] [CrossRef] [Green Version]
- Barik, S.; Karasahin, A.; Flower, C.; Cai, T.; Miyake, H.; DeGottardi, W.; Hafezi, M.; Waks, E. A topological quantum optics interface. Science 2018, 359, 666–668. [Google Scholar] [CrossRef] [Green Version]
- Barik, S.; Miyake, H.; DeGottardi, W.; Waks, E.; Hafezi, M. Two-dimensionally confined topological edge states in photonic crystals. New J. Phys. 2016, 18, 113013. [Google Scholar] [CrossRef]
- He, X.-T.; Liang, E.-T.; Yuan, J.-J.; Qiu, H.-Y.; Chen, X.-D.; Zhao, F.-L.; Dong, J.-W. A silicon-on-insulator slab for topological valley transport. Nat. Commun. 2019, 10, 872. [Google Scholar] [CrossRef] [Green Version]
- Yang, Y.; Jiang, H.; Hang, Z.H. Topological valley transport in two-dimensional honeycomb photonic crystals. Sci. Rep. 2018, 8, 1588. [Google Scholar] [CrossRef] [Green Version]
- Barik, S.; Karasahin, A.; Mittal, S.; Waks, E.; Hafezi, M. Chiral quantum optics using a topological resonator. Phys. Rev. B 2020, 101, 205303. [Google Scholar] [CrossRef]
- Ota, Y.; Liu, F.; Katsumi, R.; Watanabe, K.; Wakabayashi, K.; Arakawa, Y.; Iwamoto, S. Photonic crystal nanocavity based on a topological corner state. Optica 2019, 6, 786–789. [Google Scholar] [CrossRef]
- El Hassan, A.; Kunst, F.K.; Moritz, A.; Andler, G.; Bergholtz, E.J.; Bourennane, M. Corner states of light in photonic waveguides. Nat. Photonics 2019, 13, 697–700. [Google Scholar] [CrossRef] [Green Version]
- Palik, E.D. Handbook of Optical Constants of Solids, 3rd ed.; Academic Press: Cambridge, MA, USA, 1998. [Google Scholar]
Parameter | Symbol | Value (nm) |
---|---|---|
Cylindrical dielectric radius | 112 | |
Cylindrical dielectric height | ||
The top SiO2 thickness | ||
Ag thickness | ||
SiO2 thickness perching on Si | ||
Si thickness | ||
Length of the unit cell | 756 | |
Width of the unit cell | b | 462 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Beiranvand, B.; Khabibullin, R.A.; Sobolev, A.S. Local Field Enhancement Due to the Edge States of Nanoplasmonic Crystal. Photonics 2023, 10, 263. https://doi.org/10.3390/photonics10030263
Beiranvand B, Khabibullin RA, Sobolev AS. Local Field Enhancement Due to the Edge States of Nanoplasmonic Crystal. Photonics. 2023; 10(3):263. https://doi.org/10.3390/photonics10030263
Chicago/Turabian StyleBeiranvand, Behrokh, Rustam A. Khabibullin, and Alexander S. Sobolev. 2023. "Local Field Enhancement Due to the Edge States of Nanoplasmonic Crystal" Photonics 10, no. 3: 263. https://doi.org/10.3390/photonics10030263
APA StyleBeiranvand, B., Khabibullin, R. A., & Sobolev, A. S. (2023). Local Field Enhancement Due to the Edge States of Nanoplasmonic Crystal. Photonics, 10(3), 263. https://doi.org/10.3390/photonics10030263