Automatic Spatial Filtering by Combining Wavelet-Transform Modal Maxima and Mathematical Morphology in Digital Holographic Microscopy
Abstract
:1. Introduction
2. Spatial Filtering in Off-Axis Digital Holography
3. Theory Analysis of Adaptive Spatial Filtering
3.1. Wavelet-Transform Modal Maxima Method
3.2. Basic Operations in Mathematical Morphology
4. Experiment Verification
- Step 1: Treating the spectrum as a grayscale image, the amplitude spectrum of the hologram is wavelet-decomposed to obtain a low-frequency, approximate subimage and a high-frequency, detailed subimage.
- Step 2: Edge detection is performed using grayscale morphology on low-frequency, approximated images containing a large amount of amplitude spectrum information to obtain a binary image that approximates the shape of the object spectrum as well as the edge information of the low-frequency subimage.
- Step 3: The high-frequency, detailed subimage is detected using the wavelet-transform nonmaximally suppressed method, and the resulting binary image contains the edge information of the high-frequency subimage.
- Step 4: Fusion of low-frequency amplitude spectrum edges with high-frequency amplitude spectrum edges, which is simply image superimposition, to obtain a complete and more informative amplitude spectral edge.
4.1. Process of Adaptive Spatial Filtering
4.2. Result and Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Gabor, D. A new microscopic principle. Nature 1948, 161, 777. [Google Scholar] [CrossRef] [PubMed]
- Cuche, E.; Bevilacqua, F.; Depeursinge, C. Digital holography for quantitative phase-contrast imaging. Opt. Lett. 1999, 24, 291–293. [Google Scholar] [CrossRef] [PubMed]
- Cuche, E.; Marquet, P.; Depeursinge, C. Simultaneous amplitude-contrast and quantitative phase-contrast microscopy by numerical reconstruction of Fresnel off-axis holograms. Appl. Opt. 1999, 38, 6994–7001. [Google Scholar] [CrossRef] [PubMed]
- León-Rodríguez, M.; Rodríguez-Vera, R.; Rayas, J.A.; Calixto, S. Digital holographic microscopy through a Mirau interferometric objective. Opt. Lasers Eng. 2013, 51, 240–245. [Google Scholar] [CrossRef]
- Ferraro, P.; Coppola, G.; De Nicola, S.; Finizio, A.; Pierattini, G. Digital holographic microscope with automatic focus tracking by detection sample displacement in real time. Opt. Lett. 2003, 28, 1257–1259. [Google Scholar] [CrossRef]
- Ortega, N.P.; Montes, M.H.; Mendoza-Santoyo, F.; Flores, J. Measurement of morphology-thickness andrefractive index in Melanoma A375 cell lineusing digital holographic microscopy. Appl. Opt. 2021, 60, 815–822. [Google Scholar] [CrossRef]
- Park, H.S.; Rinehart, M.; Walzer, K.A.; Chi, J.T.A.; Wax, A. Automated Detection of P. falciparum Using Machine Learning Algorithms with Quantitative Phase Images of Unstained Cells. PLoS ONE 2016, 11, 19. [Google Scholar] [CrossRef]
- Muschol, M.; Wenders, C.; Wennemuth, G. Four-dimensional analysis by high-speed holographic imaging reveals a chiral memory of sperm flagella. PLoS ONE 2018, 13, 20. [Google Scholar] [CrossRef]
- Cacace, T.; Paturzo, M.; Memmolo, P.; Vassalli, M.; Ferraro, P.; Fraldi, M.; Mensitieri, G. Digital holography as 3D tracking tool for assessing acoustophoretic particle manipulation. Opt. Express 2017, 25, 17746–17752. [Google Scholar] [CrossRef]
- Merola, F.; Miccio, L.; Paturzo, M.; Finizio, A.; Grilli, S.; Ferraro, P. Driving and analysis of micro-objects by digital holographic microscope in microfluidics. Opt. Lett. 2011, 36, 3079–3081. [Google Scholar] [CrossRef] [PubMed]
- Montfort, F.; Emery, Y.; Solanas, E.; Cuche, E.; Aspert, N.; Marquet, P.; Joris, C.; Kuhn, J.; Depeursing, C. Surface roughness parameters measurements by Digital Holographic Microscopy (DHM). In Proceedings of the 3rd International Symposium on Precision Mechanical Measurements, Urumqi, China, 2–6 August 2006. [Google Scholar]
- Senegond, N.; Certon, D.; Bernard, J.E.; Teston, F. Characterization of cMUT by Dynamic Holography Microscopy. In Proceedings of the 2009 IEEE International Ultrasonics Symposium, Rome, Italy, 20–23 September 2009; pp. 2205–2208. [Google Scholar]
- Nomura, T. Phase imaging in-line digital holography with random phase modulation. In Proceedings of the Conference on Three-Dimensional Imaging, Visualization, and Display, Baltimore, MD, USA, 15–16 April 2019; Spie-Int Soc Optical Engineering: Baltimore, MD, USA, 2019. [Google Scholar]
- Bai, H.Y.; Shan, M.G.; Zhong, Z.; Guo, L.L.; Zhang, Y.B.; Liu, B. Fast and accurate carrier and aberration remzerooval in phase retrieval for off-axis holography. Optik 2018, 162, 95–101. [Google Scholar] [CrossRef]
- Kim, D.; You, J.W.; Kim, S. White light on-axis digital holographic microscopy based on spectral phase shifting. Opt. Express 2006, 14, 229–234. [Google Scholar] [CrossRef]
- Mann, C.J.; Yu, L.; Lo, C.M.; Kim, M.K. High-resolution quantitative phase-contrast microscopy by digital holography. Opt. Express 2005, 13, 8693–8698. [Google Scholar] [CrossRef]
- Colomb, T.; Kühn, J.; Charrière, F.; Depeursinge, C.; Aspert, N. Total aberrations compensation in digital holographic microscopy with a reference conjugated hologram. Opt. Express 2006, 14, 4300. [Google Scholar] [CrossRef] [PubMed]
- Xu, Y.; Qiu, P.Z. Off-Axis Digital Holographic Reconstruction Based on the Spatial Filtering of the Hologram Illuminated with the Reference Wave. Adv. Mater. Res. 2013, 760–762, 502–506. [Google Scholar] [CrossRef]
- Matrecano, M.; Memmolo, P.; Miccio, L.; Persano, A.; Quaranta, F.; Siciliano, P.; Ferraro, P. Improving holographic reconstruction by automatic Butterworth filtering for microelectromechanical systems characterization. Appl. Opt. 2015, 54, 3428–3432. [Google Scholar] [CrossRef]
- Zhong, Z.; Zhao, H.J.; Cao, L.C.; Shan, M.G.; Liu, B.; Lu, W.L.; Xie, H. Automatic cross filtering for off-axis digital holographic microscopy. Results Phys. 2020, 16, 6. [Google Scholar] [CrossRef]
- Li, J.; Wang, Z.; Gao, J.; Liu, Y.; Huang, J. Adaptive spatial filtering based on region growing for automatic analysis in digital holographic microscopy. Opt. Eng. 2014, 54, 031103. [Google Scholar] [CrossRef]
- Weng, J.; Li, H.; Zhang, Z.; Zhong, J. Design of adaptive spatial filter at uniform standard for automatic analysis of digital holographic microscopy. Optik 2014, 125, 2633–2637. [Google Scholar] [CrossRef]
- He, X.; Nguyen, C.V.; Pratap, M.; Zheng, Y.; Wang, Y.; Nisbet, D.R.; Williams, R.J.; Rug, M.; Maier, A.G.; Lee, W.M. Automated Fourier space region-recognition filtering for off-axis digital holographic microscopy. Biomed. Opt. Express 2016, 7, 3111–3123. [Google Scholar] [CrossRef] [Green Version]
- Zhang, Y.Y.; Wu, J.C.; Hao, R.; Jin, S.Z.; Cao, L.C. Digital holographic microscopy for red blood cell imaging. Acta Phys. Sin. 2020, 69, 16. [Google Scholar] [CrossRef]
- Gao, C.; Wen, Y.F.; Cheng, H.B.; Wang, Y.W. Automatic Phase-Distortion Compensation Algorithm in Digital Holography. Acta Opt. Sin. 2018, 38, 7. [Google Scholar]
- Miccio, L.; Alfieri, D.; Grilli, S.; Ferraro, P.; Finizio, A.; De Petrocellis, L.; Nicola, S.D. Direct full compensation of the aberrations in quantitative phase microscopy of thin objects by a single digital hologram. Appl. Phys. Lett. 2007, 90, 3. [Google Scholar] [CrossRef]
- Zuo, C.; Chen, Q.; Qu, W.; Asundi, A. Phase aberration compensation in digital holographic microscopy based on principal component analysis. Opt. Lett. 2013, 38, 1724–1726. [Google Scholar] [CrossRef]
- Ghiglia, D.C.; Romero, L.A. Robust two-dimensional weighted and unweighted phase unwrapping that uses fast transforms and iterative methods. J. Opt. Soc. Am. A 1994, 11, 107–117. [Google Scholar] [CrossRef]
- Su, T.C.; Yang, M.D. Morphological segmentation based on edge detection-II for automatic concrete crack measurement. Comput. Concr. 2018, 21, 727–739. [Google Scholar]
- Chen, J. Image Edge Detection Algorithm of Machined Parts Based on Mathematical Morphology. In Proceedings of the 2021 IEEE International Conference on Industrial Application of Artificial Intelligence (IAAI), Harbin, China, 24–26 December 2021; pp. 275–280. [Google Scholar]
- Otsu, N. A threshold selection method from gray-level histograms. IEEE Trans. Syst. Man Cybern. 1979, 9, 62–66. [Google Scholar] [CrossRef] [Green Version]
Noise Variance | PSFM | RGFM | ITFM |
---|---|---|---|
0 | 1.1342 | 22.3113 | 1.2459 |
0.02 | 2.3323 | 16.1455 | 2.3832 |
0.04 | 4.8245 | 28.3552 | 20.3526 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Xiong, H.; Zhang, D. Automatic Spatial Filtering by Combining Wavelet-Transform Modal Maxima and Mathematical Morphology in Digital Holographic Microscopy. Photonics 2023, 10, 194. https://doi.org/10.3390/photonics10020194
Xiong H, Zhang D. Automatic Spatial Filtering by Combining Wavelet-Transform Modal Maxima and Mathematical Morphology in Digital Holographic Microscopy. Photonics. 2023; 10(2):194. https://doi.org/10.3390/photonics10020194
Chicago/Turabian StyleXiong, Hu, and Dawei Zhang. 2023. "Automatic Spatial Filtering by Combining Wavelet-Transform Modal Maxima and Mathematical Morphology in Digital Holographic Microscopy" Photonics 10, no. 2: 194. https://doi.org/10.3390/photonics10020194
APA StyleXiong, H., & Zhang, D. (2023). Automatic Spatial Filtering by Combining Wavelet-Transform Modal Maxima and Mathematical Morphology in Digital Holographic Microscopy. Photonics, 10(2), 194. https://doi.org/10.3390/photonics10020194