Experimental Investigation on the Mode Characteristics of an Excited-State Quantum Dot Laser under Concave Mirror Optical Feedback
Abstract
:1. Introduction
2. Experimental Setup
3. Results and Discussion
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Dillane, M.; Lingnau, B.; Viktorov, E.A.; Kelleher, B. Mapping the Stability and Dynamics of Optically Injected Dual State Quantum Dot Lasers. Photonics 2022, 9, 101. [Google Scholar] [CrossRef]
- Holzinger, S.; Redlich, C.; Lingnau, B.; Schmidt, M.; Helversen, M.V.; Beyer, J.; Schneider, C.; Kamp, M.; Hofling, S.; Ludge, K.; et al. Tailoring the mode-switching dynamics in quantum-dot micropillar lasers via time-delayed optical feedback. Opt. Express 2018, 26, 22457–22470. [Google Scholar] [CrossRef] [PubMed]
- Chengui, G.R.G.; Jacques, K.; Woafo, P.; Chembo, Y.K. Nonlinear dynamics in an optoelectronic feedback delay oscillator with piecewise linear transfer functions from the laser diode and photodiode. Phys. Rev. E 2020, 102, 042217. [Google Scholar] [CrossRef] [PubMed]
- Jiang, N.; Xue, C.P.; Lv, Y.X.; Qiu, K. Physically enhanced secure wavelength division multiplexing chaos communication using multimode semiconductor lasers. Nonlinear Dyn. 2016, 86, 1937–1949. [Google Scholar] [CrossRef]
- Kawaguchi, Y.; Okuma, T.; Kanno, K.; Uchida, A. Entropy rate of chaos in an optically injected semiconductor laser for physical random number generation. Opt. Express 2021, 29, 2442–2457. [Google Scholar] [CrossRef]
- Zhukovsky, S.V.; Chigrin, D.N. Optical memory based on ultrafast wavelength switching in a bistable microlaser. Opt. Lett. 2009, 34, 3310–3312. [Google Scholar] [CrossRef] [PubMed]
- Salvide, M.F.; Masoller, C.; Torre, M.S. All-Optical Stochastic Logic Gate Based on a VCSEL With Tunable Optical Injection. IEEE J. Quantum Electron. 2013, 49, 886–893. [Google Scholar] [CrossRef]
- Liu, A.Y.; Zhang, C.; Norman, J.; Snyder, A.; Lubyshev, D.; Fastenau, J.M.; Liu, A.W.K.; Gossard, A.C.; Bowers, J.E. High performance continuous wave 1.3 µm quantum dot lasers on silicon. Appl. Phys. Lett. 2014, 104, 041104. [Google Scholar] [CrossRef]
- Nishi, K.; Takemasa, K.; Sugawara, M.; Arakawa, Y. Development of Quantum Dot Lasers for Data-Com and Silicon Photonics Applications. IEEE J. Sel. Top. Quantum Electron. 2017, 23, 1901007. [Google Scholar] [CrossRef]
- Yamamoto, N.; Akahane, K.; Kawanishi, T.; Sotobayashi, H.; Yoshioka, Y.; Takai, H. Characterization of Wavelength-Tunable Quantum Dot External Cavity Laser for 1.3-µm-Waveband Coherent Light Sources. Jpn. J. Appl. Phys. 2012, 51, 02BG08. [Google Scholar] [CrossRef]
- Li, Q.Z.; Wang, X.; Zhang, Z.Y.; Chen, H.M.; Huang, Y.Q.; Hou, C.C.; Wang, J.; Zhang, R.Y.; Ning, J.Q.; Min, J.H.; et al. Development of Modulation p-Doped 1310 nm InAs/GaAs Quantum Dot Laser Materials and Ultrashort Cavity Fabry-Perot and Distributed-Feedback Laser Diodes. ACS Photonics 2018, 5, 1084–1093. [Google Scholar] [CrossRef]
- Virte, M.; Panajotov, K.; Sciamanna, M. Mode Competition Induced by Optical Feedback in Two-Color Quantum Dot Lasers. IEEE J. Quantum Electron. 2013, 49, 578–585. [Google Scholar] [CrossRef]
- Saito, H.; Nishi, K.; Kamei, A.; Sugou, S. Low chirp observed in directly modulated quantum dot lasers. IEEE Photonics Technol. Lett. 2000, 12, 1298–1300. [Google Scholar] [CrossRef]
- Xu, P.F.; Yang, T.; Ji, H.M.; Cao, Y.L.; Gu, Y.X.; Liu, Y.; Ma, W.Q.; Wang, Z.G. Temperature-dependent modulation characteristics for 1.3 µm InAs/GaAs quantum dot lasers. J. Appl. Phys. 2010, 107, 013102. [Google Scholar]
- Li, S.G.; Gong, Q.; Cao, C.F.; Wang, X.Z.; Chen, P.; Yue, L.; Liu, Q.B.; Wang, H.L.; Ma, C.H. Temperature dependent lasing characteristics of InAs/InP(100) quantum dot laser. Mater. Sci. Semicond. Process. 2012, 15, 86–90. [Google Scholar] [CrossRef]
- Wang, C.; Osinski, M.; Even, J.; Grillot, F. Phase-amplitude coupling characteristics in directly modulated quantum dot lasers. Appl. Phys. Lett. 2014, 105, 221114. [Google Scholar] [CrossRef]
- O’Brien, D.; Hegarty, S.P.; Huyet, G.; Uskov, A.V. Sensitivity of quantum-dot semiconductor lasers to optical feedback. Opt. Lett. 2004, 29, 1072–1074. [Google Scholar] [CrossRef]
- Azouigui, S.; Dagens, B.; Lelarge, F.; Provost, J.G.; Make, D.; Le Gouezigou, O.; Accard, A.; Martinez, A.; Merghem, K.; Grillot, F.; et al. Optical Feedback Tolerance of Quantum-Dot- and Quantum-Dash-Based Semiconductor Lasers Operating at 1.55 µm. IEEE J. Sel. Top. Quantum Electron. 2009, 15, 764–773. [Google Scholar] [CrossRef]
- Zhukov, A.E.; Kovsh, A.R. Quantum dot diode lasers for optical communication systems. Quantum Electron. 2008, 38, 409–423. [Google Scholar] [CrossRef]
- Norman, J.C.; Jung, D.; Zhang, Z.Y.; Wan, Y.T.; Liu, S.T.; Shang, C.; Herrick, R.W.; Chow, W.W.; Gossard, A.C.; Bowers, J.E. A Review of High-Performance Quantum Dot Lasers on Silicon. IEEE J. Quantum Electron. 2019, 55, 2000511. [Google Scholar] [CrossRef]
- Norman, J.C. The future of quantum dot photonic integrated circuits. APL Photonics 2018, 3, 030901. [Google Scholar] [CrossRef] [Green Version]
- Wang, C.; Raghunathan, R.; Schires, K.; Chan, S.C.; Lester, L.F.; Grillot, F. Optically injected InAs/GaAs quantum dot laser for tunable photonic microwave generation. Opt. Lett. 2016, 41, 1153–1156. [Google Scholar] [CrossRef] [PubMed]
- Jiang, Z.F.; Wu, Z.M.; Yang, W.Y.; Hu, C.X.; Jin, Y.H.; Xiao, Z.Z.; Xia, G.Q. Numerical investigation on photonic microwave generation by a sole excited-state emitting quantum dot laser with optical injection and optical feedback. Chin. Phys. B. 2021, 30, 050504. [Google Scholar] [CrossRef]
- Viktorov, E.A.; Mandel, P.; Tanguy, Y.; Houlihan, J.; Huyet, G. Electron-hole asymmetry and two-state lasing in quantum dot lasers. Appl. Phys. Lett. 2005, 87, 053113. [Google Scholar] [CrossRef]
- Meinecke, S.; Lingnau, B.; Rohm, A.; Ludge, K. Stability of Optically Injected Two-State Quantum-Dot Lasers. Ann. Phys. 2017, 529, 1600279. [Google Scholar] [CrossRef]
- Grillot, F.; Norman, J.C.; Duan, J.N.; Zhang, Z.Y.; Dong, B.Z.; Huang, H.M.; Chow, W.W.; Bowers, J.E. Physics and applications of quantum dot lasers for silicon photonics. Nanophotonics 2020, 9, 1271–1286. [Google Scholar] [CrossRef]
- Huyet, G.; O’Brien, D.; Hegarty, S.P.; McInerney, J.G.; Uskov, A.V.; Bimberg, D.; Ribbat, C.; Ustinov, V.M.; Zhukov, A.E.; Mikhrin, S.S.; et al. Quantum dot semiconductor lasers with optical feedback. Phys. Status Solidi A 2004, 201, 345–352. [Google Scholar] [CrossRef]
- O’Brien, D.; Hegarty, S.P.; Huyet, G.; McInerney, J.G.; Kettler, T.; Laemmlin, M.; Bimberg, D.; Ustinov, V.M.; Zhukov, A.E.; Mikhrin, S.S.; et al. Feedback sensitivity of 1.3 mu m InAs/GaAs quantum dot lasers. Electron. Lett. 2003, 39, 1819–1820. [Google Scholar] [CrossRef]
- Stevens, B.J.; Childs, D.T.D.; Shahid, H.; Hogg, R.A. Direct modulation of excited state quantum dot lasers. Appl. Phys. Lett. 2009, 95, 061101. [Google Scholar] [CrossRef]
- Lin, L.C.; Chen, C.Y.; Huang, H.M.; Arsenijevic, D.; Bimberg, D.; Grillot, F.; Lin, F.Y. Comparison of optical feedback dynamics of InAs/GaAs quantum-dot lasers emitting solely on ground or excited states. Opt. Lett. 2018, 43, 210–213. [Google Scholar] [CrossRef]
- Arsenijevic, D.; Schliwa, A.; Schmeckebier, H.; Stubenrauch, M.; Spiegelberg, M.; Bimberg, D.; Mikhelashvili, V.; Eisenstein, G. Comparison of dynamic properties of ground- and excited-state emission in p-doped InAs/GaAs quantum-dot lasers. Appl. Phys. Lett. 2014, 104, 181101. [Google Scholar] [CrossRef]
- Huang, H.M.; Lin, L.C.; Chen, C.Y.; Arsenijevic, D.; Bimberg, D.; Lin, F.Y.; Grillot, F. Multimode optical feedback dynamics in InAs/GaAs quantum dot lasers emitting exclusively on ground or excited states: Transition from short- to long-delay regimes. Opt. Express 2018, 26, 1743–1751. [Google Scholar] [CrossRef] [PubMed]
- Virte, M.; Breuer, S.; Sciamanna, M.; Panajotov, K. Switching between ground and excited states by optical feedback in a quantum dot laser diode. Appl. Phys. Lett. 2014, 105, 121109. [Google Scholar] [CrossRef]
- Tykalewicz, B.; Goulding, D.; Hegarty, S.P.; Huyet, G.; Byrne, D.; Phelan, R.; Kelleher, B. All-optical switching with a dual-state, single-section quantum dot laser via optical injection. Opt. Lett. 2014, 39, 4607–4610. [Google Scholar] [CrossRef]
- Virte, M.; Pawlus, R.; Sciamanna, M.; Panajotov, K.; Breuer, S. Energy exchange between modes in a multimode two-color quantum dot laser with optical feedback. Opt. Lett. 2016, 41, 3205–3208. [Google Scholar] [CrossRef]
- Tykalewicz, B.; Goulding, D.; Hegarty, S.P.; Huyet, G.; Dubinkin, I.; Fedorov, N.; Erneux, T.; Viktorov, E.A.; Kelleher, B. Optically induced hysteresis in a two-state quantum dot laser. Opt. Lett. 2016, 41, 1034–1037. [Google Scholar] [CrossRef]
- Kelleher, B.; Tykalewicz, B.; Goulding, D.; Fedorov, N.; Dubinkin, I.; Erneux, T.; Viktorov, E.A. Two-color bursting oscillations. Sci. Rep. 2017, 7, 8414. [Google Scholar] [CrossRef]
- Dillane, M.; Dubinkin, I.; Fedorov, N.; Erneux, T.; Goulding, D.; Kelleher, B.; Viktorov, E.A. Excitable interplay between lasing quantum dot states. Phys. Rev. E 2019, 100, 012202. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zheng, Y.; Xia, G.; Lin, X.; Wang, Q.; Wang, H.; Jiang, C.; Chen, H.; Wu, Z. Experimental Investigation on the Mode Characteristics of an Excited-State Quantum Dot Laser under Concave Mirror Optical Feedback. Photonics 2023, 10, 166. https://doi.org/10.3390/photonics10020166
Zheng Y, Xia G, Lin X, Wang Q, Wang H, Jiang C, Chen H, Wu Z. Experimental Investigation on the Mode Characteristics of an Excited-State Quantum Dot Laser under Concave Mirror Optical Feedback. Photonics. 2023; 10(2):166. https://doi.org/10.3390/photonics10020166
Chicago/Turabian StyleZheng, Yanfei, Guangqiong Xia, Xiaodong Lin, Qingqing Wang, Hongpei Wang, Cheng Jiang, Hongmei Chen, and Zhengmao Wu. 2023. "Experimental Investigation on the Mode Characteristics of an Excited-State Quantum Dot Laser under Concave Mirror Optical Feedback" Photonics 10, no. 2: 166. https://doi.org/10.3390/photonics10020166
APA StyleZheng, Y., Xia, G., Lin, X., Wang, Q., Wang, H., Jiang, C., Chen, H., & Wu, Z. (2023). Experimental Investigation on the Mode Characteristics of an Excited-State Quantum Dot Laser under Concave Mirror Optical Feedback. Photonics, 10(2), 166. https://doi.org/10.3390/photonics10020166