Interactions of Atomistic Nitrogen Optical Centers during Bulk Femtosecond Laser Micromarking of Natural Diamond
Abstract
:1. Introduction
2. Materials and Methods
3. Results
3.1. PL Spectra at 532 nm Laser Photoexcitation
3.2. PL Spectra at 405 nm Photoexcitation
- A maximum at 475 nm is mainly influenced by N3a center, with a 405 nm excitation micromark appearing at 75 µm and ending up at ~120 µm both for 0.8 and 1.6 µJ;
- At 525 nm (which is mainly influenced by H4 and H3 and secondly by N3a), the micromark for 1.6 µJ starts from 60 µm and ends at 150 µm and, for 0.8 µJ, starts from 75 µm and ends at 125 µm;
- A maximum of 580 nm (which is mainly influenced by N3b and NV0 and secondly by N3a, H4, and H3) can be seen in the 405 nm excitation. At 405 nm, the micromark for 1.6 µJ starts from 50 µm and ends at 177 µm and, for 0.8 µJ, starts at 70 µm and ends at 125 µm;
- The 650 nm maximum (which is mainly influenced by NV− and secondly by N3a, H4, H3, N3b, and NV0) can be seen both for 405 nm. The micromark starts at 30 µm for both 0.8 and 1.6 µJ and ends at 140 µm for 0.8 µJ and at 177 µm for 1.6 µJ.
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Chen, Y.C.; Salter, P.S.; Knauer, S.; Weng, L.; Frangeskou, A.C.; Stephen, C.J.; Ishmael, S.N.; Dolan, P.R.; Jonson, S.; Green, B.L.; et al. Laser writing of coherent colour centres in diamond. Nat. Photonics 2017, 11, 77–80. [Google Scholar] [CrossRef] [Green Version]
- Bharadwaj, V.; Jedrkiewicz, O.; Hadden, J.P.; Sotillo, B.; Vazquez, M.R.; Dentella, P.; Fernandezm, T.T.; Chiappini, A.; Giakoumaki, A.N.; Le Phu, T.; et al. Femtosecond laser written photonic and microfluidic circuits in diamond. J. Phys. Photonics 2019, 1, 022001. [Google Scholar] [CrossRef]
- Sotillo, B.; Bharadwaj, V.; Hadden, J.P.; Sakakura, M.; Chiappini, A.; Fernandez, T.T.; Longhi, S.; Jedrkiewicz, O.; Shimotsuma, Y.; Criante, L.; et al. Diamond photonics platform enabled by femtosecond laser writing. Sci. Rep. 2016, 6, 35566. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Dischler, B. Handbook of Spectral Lines in Diamond; Springer: Berlin, Germany, 2012. [Google Scholar]
- Behrens, H.; Janecke, J.; Schopper, H.; Landolt, H.H.; Bornstein, R. Landolt-Bornstein: Numerical Data and Functional Relationships in Science and Technology; Springer: Berlin, Germany, 1969. [Google Scholar]
- Ionin, A.A.; Kudryashov, S.I.; Smirnov, N.A.; Danilov, P.A.; Levchenko, A.O. Method for Creating and Detecting an Optically Permeable Image Inside a Diamond. U.S. Patent US20210316401A1, 14 October 2021. [Google Scholar]
- Sotillo, B.; Bharadwaj, V.; Hadden, J.P.; Rampini, S.; Chiappini, A.; Fernandez, T.T.; Armellini, C.; Serpengüzel, A.; Ferrari, M.; Barclay, P.E.; et al. Visible to infrared diamond photonics enabled by focused femtosecond laser pulses. Micromachines 2017, 8, 60. [Google Scholar] [CrossRef] [Green Version]
- Chen, Y.C.; Griffiths, B.; Weng, L.; Nicley, S.S.; Ishmael, S.N.; Lekhai, Y.; Johnson, S.; Stephen, C.J.; Green, B.L.; Morley, G.W.; et al. Laser writing of individual nitrogen-vacancy defects in diamond with near-unity yield. Optica 2019, 6, 662–667. [Google Scholar] [CrossRef]
- Hayes, W.; Stoneham, A.M. Defects and Defect Processes in Nonmetallic Solids; Dover: New York, NY, USA, 1985. [Google Scholar]
- Kudryashov, S.I.; Khmelnitskii, R.A.; Danilov, P.A.; Smirnov, N.A.; Levchenko, A.O.; Kovalchuk, O.E.; Uspenskaya, M.V.; Oleynichuk, E.A.; Kovalev, M.S. Broadband and fine-structured luminescence in diamond facilitated by femtosecond laser driven electron impact and injection of “vacancy-interstitial” pairs. Opt. Lett. 2021, 46, 1438–1441. [Google Scholar] [CrossRef]
- Yurgens, V.; Zuber, J.A.; Flågan, S.; De Luca, M.; Shields, B.J.; Zardo, I.; Maletinsky, P.; Warburton, R.J.; Jakubczyk, T. Low-charge-noise nitrogen-vacancy centers in diamond created using laser writing with a solid-immersion lens. ACS Photonics 2021, 8, 1726–1734. [Google Scholar] [CrossRef]
- Kurita, T.; Shimotsuma, Y.; Fujiwara, M.; Fujie, M.; Mizuochi, N.; Shimizu, M.; Miura, K. Direct writing of high-density nitrogen-vacancy centers inside diamond by femtosecond laser irradiation. Appl. Phys. Lett. 2021, 118, 214001. [Google Scholar] [CrossRef]
- Kudryashov, S.I.; Danilov, P.A.; Sdvizhenskii, P.A.; Lednev, V.N.; Chen, J.; Ostrikov, S.A.; Kuzmin, E.V.; Kovalev, M.S.; Levchenko, A.O. Transformations of the Spectrum of an Optical Phonon Excited in Raman Scattering in the Bulk of Diamond by Ultrashort Laser Pulses with a Variable Duration. JETP Lett. 2022, 115, 251–255. [Google Scholar] [CrossRef]
- Kudryashov, S.; Danilov, P.; Smirnov, N.; Levchenko, A.; Kovalev, M.; Gulina, Y.; Kovalchuk, O.; Ionin, A. Femtosecond-laser-excited luminescence of the A-band in natural diamond and its thermal control. Opt. Mater. Express 2021, 11, 2505–2513. [Google Scholar] [CrossRef]
- Zaitsev, A.M. Optical Properties of Diamond: A Data Handbook; Springer Science & Business Media: Berlin/Heidelberg, Germany, 2013. [Google Scholar]
- Sobolev, E.V.; Eliseev, A.P. Thermostimulated luminescence and phosphorescence of natural diamonds at low temperatures. Zhurnal Strukturnoi Khimii 1976, 17, 933–935. [Google Scholar] [CrossRef]
- Field, J.E. (Ed.) The Properties of Natural and Synthetic Diamond; Academic Press: London, UK, 1992. [Google Scholar]
- Dobrinets, I.A.; Vins, V.G.; Zaitsev, A.M. HPHT-Treated Diamonds. Diamonds Forever; Springer: Berlin/Heidelberg, Germany, 2013. [Google Scholar]
- Bokii, G.B.; Bezrukov, G.N.; Klyuev, Y.A.; Naletov, A.M.; Nepsha, V.I. Natural and Synthetic Diamonds; Nauka: Moscow, Russia, 1986. (In Russian) [Google Scholar]
- Collins, A.T. The characterisation of point defects in diamond by luminescence spectroscopy. Diam. Relat. Mater. 1992, 1, 457–469. [Google Scholar] [CrossRef]
- Gheeraert, E.; Deneuville, A.; Bonnot, A.M.; Abello, L. Defects and stress analysis of the Raman spectrum of diamond films. Diam. Relat. Mater. 1992, 1, 525–528. [Google Scholar] [CrossRef]
- Collins, A.T. Excited states of the H3 vibronic centre in diamond. J. Phys. C Solid State Phys. 1983, 16, 6691. [Google Scholar] [CrossRef]
- Collins, A.T.; Connor, A.; Ly, C.-H.; Shareef, A.; Spear, P.M. High-temperature annealing of optical centers in type-I diamond. J. Appl. Phys. 2005, 97, 083517. [Google Scholar] [CrossRef]
- Ju, Z.; Lin, J.; Shen, S.; Wu, B.; Wu, E. Preparations and applications of single color centers in diamond. Adv. Phys. 2021, 6, 1858721. [Google Scholar] [CrossRef]
- Kempkes, M.; Zier, T.; Singer, K.; Garcia, M.E. Ultrafast nonthermal NV center formation in diamond. Carbon 2021, 174, 524–530. [Google Scholar] [CrossRef]
- Kozák, M.; Trojánek, F.; Malý, P. Large prolongation of free-exciton photoluminescence decay in diamond by two-photon excitation. Opt. Lett. 2012, 37, 2049–2051. [Google Scholar] [CrossRef]
- Collins, A.T. Vacancy enhanced aggregation of nitrogen in diamond. J. Phys. C Solid State Phys. 1980, 13, 2641–2650. [Google Scholar] [CrossRef]
- Danilov, P.; Kuzmin, E.; Rimskaya, E.; Chen, J.; Khmelnitskii, R.; Kirichenko, A.; Rodionov, N.; Kudryashov, S. Up/Down-Scaling Photoluminescent Micromarks Written in Diamond by Ultrashort Laser Pulses: Optical Photoluminescent and Structural Raman Imaging. Micromachines 2022, 13, 1883. [Google Scholar] [CrossRef]
- Kudryashov, S.I.; Vins, V.G.; Danilov, P.A.; Kuzmin, E.V.; Muratov, A.V.; Kriulina, G.Y.; Chen, J.; Kirichenko, A.N.; Gulina, Y.S.; Ostrikov, S.A.; et al. Permanent optical bleaching in HPHT-diamond via aggregation of C-and NV-centers excited by visible-range femtosecond laser pulses. Carbon 2023, 201, 399–407. [Google Scholar] [CrossRef]
- Thonke, K.; Schliesing, R.; Teofilov, N.; Zacharias, H.; Sauer, R.; Zaitsev, A.M.; Kanda, H.; Anthony, T.R. Electron–hole drops in synthetic diamond. Diam. Relat. Mater. 2000, 9, 428–431. [Google Scholar] [CrossRef]
- Kudryashov, S.; Stsepuro, N.; Danilov, P.; Smirnov, N.; Levchenko, A.; Kovalev, M. Cumulative defocusing of sub-MHz-rate femtosecond-laser pulses in bulk diamond envisioned by transient A-band photoluminescence. Opt. Mater. Express. 2021, 11, 2234–2241. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Rimskaya, E.; Kriulina, G.; Kuzmin, E.; Kudryashov, S.; Danilov, P.; Kirichenko, A.; Rodionov, N.; Khmelnitskii, R.; Chen, J. Interactions of Atomistic Nitrogen Optical Centers during Bulk Femtosecond Laser Micromarking of Natural Diamond. Photonics 2023, 10, 135. https://doi.org/10.3390/photonics10020135
Rimskaya E, Kriulina G, Kuzmin E, Kudryashov S, Danilov P, Kirichenko A, Rodionov N, Khmelnitskii R, Chen J. Interactions of Atomistic Nitrogen Optical Centers during Bulk Femtosecond Laser Micromarking of Natural Diamond. Photonics. 2023; 10(2):135. https://doi.org/10.3390/photonics10020135
Chicago/Turabian StyleRimskaya, Elena, Galina Kriulina, Evgeny Kuzmin, Sergey Kudryashov, Pavel Danilov, Alexey Kirichenko, Nikolay Rodionov, Roman Khmelnitskii, and Jiajun Chen. 2023. "Interactions of Atomistic Nitrogen Optical Centers during Bulk Femtosecond Laser Micromarking of Natural Diamond" Photonics 10, no. 2: 135. https://doi.org/10.3390/photonics10020135