Mitigating Environmental Effects in Halide Perovskites through Hybrid Perovskite-Polymer Nanocomposites: A Short Review
Abstract
:1. Introduction
2. Structure, Properties, and Ambient Degradation of Perovskites
2.1. Crystal Structure
2.2. Optical and Electrical Properties
2.3. Deleterious Effects of Environmental Factors
2.3.1. Moisture
2.3.2. Oxygen
2.3.3. UV Light
2.3.4. Heat
2.4. Perovskite-Polymer Nanocomposites for Improved Stability
3. Fabrication of Polymer-Perovskite Nanocomposites
3.1. Blending Polymers with MHP Nanocrystals
3.2. In-Situ Formation of Perovskite in Polymers
3.3. Simultaneous Synthesis of Perovskite and Polymer Polymerization
4. Charge Transport Properties of Polymer-Perovskite Nanocomposites
5. Conclusions and Future Perspectives
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Zhang, J.; Li, X.; Wang, L.; Yu, J.; Wageh, S.; Al-Ghamdi, A.A. Enhanced performance of CH3NH3PbI3 perovskite solar cells by excess halide modification. Appl. Surf. Sci. 2021, 564, 150464. [Google Scholar] [CrossRef]
- Nishimura, K.; Kamarudin, M.A.; Hirotani, D.; Hamada, K.; Shen, Q.; Iikubo, S.; Minemoto, T.; Yoshino, K.; Hayase, S. Lead-free tin-halide perovskite solar cells with 13% efficiency. Nano Energy 2020, 74, 104858. [Google Scholar] [CrossRef]
- Ahmad, K.; Kim, H. Improved photovoltaic performance and stability of perovskite solar cells with device structure of (ITO/SnO2/CH3NH3PbI3/rGO+spiro-MeOTAD/Au). Mater. Sci. Eng. B 2023, 289, 116227. [Google Scholar] [CrossRef]
- De Franco, M.; Cirignano, M.; Cavattoni, T.; Jalali, H.B.; Prato, M.; Di Stasio, F. Facile purification protocol of CsPbBr3 nanocrystals for light-emitting diodes with improved performance. Opt. Mater. X 2022, 13, 100124. [Google Scholar] [CrossRef]
- Iskandar, J.; Lee, C.-C.; Kurniawan, A.; Cheng, H.-M.; Liu, S.-W.; Biring, S. Improving the efficiency of near-IR perovskite LEDs via surface passivation and ultrathin interfacial layers. Cell Rep. Phys. Sci. 2022, 3, 101170. [Google Scholar] [CrossRef]
- Kim, B.W.; Heo, J.H.; Park, J.K.; Lee, D.S.; Park, H.; Kim, S.Y.; Kim, J.H.; Im, S.H. Morphology controlled nanocrystalline CsPbBr3 thin-film for metal halide perovskite light emitting diodes. J. Ind. Eng. Chem. 2021, 97, 417–425. [Google Scholar] [CrossRef]
- Ding, J.; Cheng, X.; Jing, L.; Zhou, T.; Zhao, Y.; Du, S. Polarization-dependent optoelectronic performances in hybrid halide perovskite MAPbX3 (X = Br, Cl) single-crystal photodetectors. ACS Appl. Mater. Interfaces 2018, 10, 845–850. [Google Scholar] [CrossRef]
- Li, Z.; Li, H.; Jiang, K.; Ding, D.; Li, J.; Ma, C.; Jiang, S.; Wang, Y.; Anthopoulos, T.D.; Shi, Y. Self-powered perovskite/CdS heterostructure photodetectors. ACS Appl. Mater. Interfaces 2019, 11, 40204–40213. [Google Scholar] [CrossRef]
- Cheng, Z.; Liu, K.; Yang, J.; Chen, X.; Xie, X.; Li, B.; Zhang, Z.; Liu, L.; Shan, C.; Shen, D. High-performance planar-type ultraviolet photodetector based on high-quality CH3NH3PbCl3 perovskite single crystals. ACS Appl. Mater. Interfaces 2019, 11, 34144–34150. [Google Scholar] [CrossRef]
- Kojima, A.; Teshima, K.; Shirai, Y.; Miyasaka, T. Organometal halide perovskites as visible-light sensitizers for photovoltaic cells. J. Am. Chem. Soc. 2009, 131, 6050–6051. [Google Scholar] [CrossRef]
- Interactive Best Research—Cell Efficiency Chart, NREL. Available online: https://www.nrel.gov/pv/assets/pdfs/cell-pv-eff-emergingpv.pdf (accessed on 29 September 2023).
- Pham, H.D.; Yang, T.C.-J.; Jain, S.M.; Wilson, G.J.; Sonar, P. Development of dopant-free organic hole transporting materials for perovskite solar cells. Adv. Energy Mater. 2020, 10, 1903326. [Google Scholar] [CrossRef]
- Im, J.-H.; Lee, C.-R.; Lee, J.-W.; Park, S.-W.; Park, N.-G. 6.5% efficient perovskite quantum-dot-sensitized solar cell. Nanoscale 2011, 3, 4088–4093. [Google Scholar] [CrossRef] [PubMed]
- Lee, M.M.; Teuscher, J.; Miyasaka, T.; Murakami, T.N.; Snaith, H.J. Efficient hybrid solar cells based on meso-superstructured organometal halide perovskites. Science 2012, 338, 643–647. [Google Scholar] [CrossRef] [PubMed]
- Burschka, J.; Pellet, N.; Moon, S.-J.; Humphry-Baker, R.; Gao, P.; Nazeeruddin, M.K.; Grätzel, M. Sequential deposition as a route to high-performance perovskite-sensitized solar cells. Nature 2013, 499, 316–319. [Google Scholar] [CrossRef] [PubMed]
- Jeon, N.J.; Noh, J.H.; Yang, W.S.; Kim, Y.C.; Ryu, S.; Seo, J.; Seok, S.I. Compositional engineering of perovskite materials for high-performance solar cells. Nature 2015, 517, 476–480. [Google Scholar] [CrossRef]
- Jiang, Q.; Zhao, Y.; Zhang, X.; Yang, X.; Chen, Y.; Chu, Z.; Ye, Q.; Li, X.; Yin, Z.; You, J. Surface passivation of perovskite film for efficient solar cells. Nat. Photonics 2019, 13, 460–466. [Google Scholar] [CrossRef]
- Kim, G.; Min, H.; Lee, K.S.; Lee, D.Y.; Yoon, S.M.; Seok, S.I. Impact of strain relaxation lead iodide perovskite solar cells. Science 2020, 370, 108–112. [Google Scholar] [CrossRef]
- Jeong, J.; Kim, M.; Seo, J.; Lu, H.; Ahlawat, P.; Mishra, A.; Yang, Y.; Hope, M.A.; Eickemeyer, F.T.; Kim, M.; et al. Pseudo-halide anion engineering for α-FAPbI3 perovskite solar cells. Nature 2021, 592, 381–385. [Google Scholar] [CrossRef]
- De Wolf, S.; Holovsky, J.; Moon, S.-J.; Löper, P.; Niesen, B.; Ledinsky, M.; Haug, F.-J.; Yum, J.-H.; Ballif, C. Organometallic halide perovskites: Sharp optical absorption edge and its relation to photovoltaic performance. J. Phys. Chem. Lett. 2014, 5, 1035–1039. [Google Scholar] [CrossRef]
- Pellet, N.; Gao, P.; Gregori, G.; Yang, T.-Y.; Nazeeruddin, M.K.; Maier, J.; Grätzel, M. Mixed-organic-cation perovskite photovoltaics for enhanced solar-light harvesting. Angew. Chem. Int. Ed. 2014, 53, 3151–3157. [Google Scholar] [CrossRef]
- Liu, X.-Y.; Cui, Y.; Deng, J.-P.; Liu, Y.-Y.; Ma, X.-F.; Hou, Y.-X.; Wei, J.-Y.; Li, Z.-Q.; Wang, Z.-W. Charge carriers trapping by the full-configuration defects in metal halide perovskites quantum dots. J. Phys. Chem. Lett. 2022, 13, 8858–8863. [Google Scholar] [CrossRef]
- Targhi, F.F.; Jalili, Y.S.; Kanjouri, F. MAPbI3 and FAPbI3 perovskites as solar cells: Case study on structural, electrical and optical properties. Res. Phys. 2018, 10, 616–627. [Google Scholar] [CrossRef]
- Chen, X.; Peng, L.; Huang, K.; Shi, Z.; Xie, R.; Yang, W. Non-injection gram-scale synthesis of cesium lead halide perovskite quantum dots with controllable size and composition. Nano Res. 2016, 9, 1994–2006. [Google Scholar] [CrossRef]
- Mandal, A.; Ghosh, A.; Ghosh, D.; Bhattacharyya, S. Photodetectors with high responsivity by thickness tunable mixed halide perovskite nanosheets. ACS Appl. Mater. Interfaces 2021, 13, 43104–43114. [Google Scholar] [CrossRef]
- Huang, L.; Gao, Q.; Sun, L.-D.; Dong, H.; Shi, S.; Cai, T.; Liao, Q.; Yan, C.-H. Composition-graded cesium lead halide perovskite nanowires with tunable dual-color lasing performance. Adv. Mater. 2018, 30, 1800596. [Google Scholar] [CrossRef] [PubMed]
- Lai, M.; Kong, Q.; Bischak, C.-G.; Yu, Y.; Dou, L.; Eaton, S.W.; Ginsberg, N.S.; Yang, P. Structural, optical, and electrical properties of phase-controlled cesium lead iodide nanowires. Nano Res. 2017, 10, 1107–1114. [Google Scholar] [CrossRef]
- Wali, Q.; Iftikhar, F.J.; Khan, M.E.; Ullah, A.; Iqbal, Y.; Jose, R. Advances in stability of perovskite solar cells. Org. Elect. 2020, 78, 105590. [Google Scholar] [CrossRef]
- Thomas, S. Observing phase transitions in a halide perovskite using temperature dependent photoluminescence spectroscopy. In Edinburgh Instrument Application Note; Edinburgh Instruments Ltd.: Livingston, UK, 2018. [Google Scholar]
- Kim, H.-S.; Im, S.H.; Park, N.-G. Organolead halide perovskite: New horizons in solar cell research. J. Phys. Chem. C 2014, 118, 5615–5625. [Google Scholar] [CrossRef]
- Ali, H.M.; Reda, S.M.; Ali, A.I.; Mousa, M.A. A quick peek at solar cells and a closer insight at perovskite solar cells. Egypt. J. Pet. 2021, 30, 53–63. [Google Scholar] [CrossRef]
- Leijtens, T.; Eperon, G.E.; Noel, N.K.; Habisreutinger, S.N.; Petrozza, A.; Snaith, H.J. Stability of metal halide perovskite solar cells. Adv. Energy Mater. 2015, 5, 1500963. [Google Scholar] [CrossRef]
- Li, J.; Chen, Z.; Saha, S.; Utterback, J.K.; Aubrey, M.L.; Yuan, R.; Weaver, H.L.; Ginsberg, N.S.; Chapman, K.W.; Filip, M.R.; et al. Zwitterions in 3D perovskites: Organosulfide-halide perovskites. J. Am. Chem. Soc. 2022, 144, 22403–22408. [Google Scholar] [CrossRef] [PubMed]
- Goldschmidt, V.M. Krystallbau und chemische zusammensetzung. Berichte Dtsch. Chem. Ges. A/B 1927, 60, 1263–1296. [Google Scholar] [CrossRef]
- Yang, W.F.; Igbari, F.; Lou, Y.-H.; Wang, Z.-K.; Liao, L.-S. Tin halide perovskites: Progress and challenges. Adv. Energy Mater. 2020, 10, 1902584. [Google Scholar] [CrossRef]
- Li, C.; Lu, X.; Ding, W.; Feng, L.; Gao, Y.; Guo, Z. Formability of ABX3 (X = F, Cl, Br, I) halide perovskites. Acta Cryst. B 2008, B64, 702–707. [Google Scholar] [CrossRef] [PubMed]
- Han, T.-H.; Tan, S.; Xue, J.; Meng, L.; Lee, J.-W.; Yang, Y. Interface and defect engineering for metal halide perovskite optoelectronic devices. Adv. Mater. 2019, 31, 1803515. [Google Scholar] [CrossRef] [PubMed]
- Nasti, G.; Abate, A. Tin halide perovskite (ASnX3) solar cells: A comprehensive guide toward the highest power conversion efficiency. Adv. Energy Mater. 2020, 10, 1902467. [Google Scholar] [CrossRef]
- Travis, W.; Glover, E.N.K.; Bronstein, H.; Scanlon, D.O.; Palgrave, R.G. On the application of the tolerance factor to inorganic and hybrid halide perovskites: A revised system. Chem. Sci. 2016, 7, 4548–4556. [Google Scholar] [CrossRef]
- Hussain, I.; Tran, H.P.; Jaksik, J.; Moore, J.; Islam, N.; Uddin, M.J. Functional materials, device architecture, and flexibility of perovskite solar cell. Emergent Mater. 2018, 1, 133–154. [Google Scholar] [CrossRef]
- Aftab, A.; Ahmad, I. A review of stability and progress in tin halide perovskite solar cell. Sol. Energy 2021, 216, 26–47. [Google Scholar] [CrossRef]
- Hong Noh, J.; Im, S.H.; Heo, J.H.; Mandal, N.; Seok, S.I. Chemical management for colorful, efficient, and stable inorganic−organic hybrid nanostructured solar cells. Nano Lett. 2013, 13, 1764–1769. [Google Scholar]
- Protesescu, L.; Yakunin, S.; Bodnarchuk, M.I.; Krieg, F.; Caputo, R.; Hendon, C.H.; Yang, R.X.; Walsh, A.; Kovalenko, M.V. Nanocrystals of cesium lead halide perovskites (CsPbX3, X = Cl, Br, and I): Novel optoelectronic materials showing bright emission with wide color gamut. Nano Lett. 2015, 15, 3692–3696. [Google Scholar] [CrossRef] [PubMed]
- Tao, S.X.; Cao, X.; Bobbert, P.A. Accurate and efficient band gap predictions of metal halide perovskites using the DFT-1/2 method: GW accuracy with DFT expense. Sci. Rep. 2017, 7, 14386. [Google Scholar] [CrossRef] [PubMed]
- Ye, X.; Liu, A.; Zhao, Y.; Han, Q.; Kitamura, T.; Ma, T. DFT study of X-site ion substitution doping of Cs2PtX6 on its structural and electronic properties. Int. J. Energy Res. 2022, 46, 8471–8479. [Google Scholar] [CrossRef]
- Rasukkannu, M.; Velauthapillai, D.; Vajeeston, P. A first-principle study of the electronic, mechanical and optical properties of inorganic perovskite Cs2SnI6 for intermediate-band solar cells. Mater. Lett. 2018, 218, 233–236. [Google Scholar] [CrossRef]
- Ornelas-Cruz, I.; Trejo, A.; Oviedo-Roa, R.; Salazar, F.; Carvajal, E.; Miranda, A.; Cruz-Irisson, M. DFT-based study of the bulk tin mixed-halide CsSnI3−xBrx perovskite. Comput. Mater. Sci. 2020, 178, 109619. [Google Scholar] [CrossRef]
- RaeisianAsl, M.; Panahi, S.F.K.S.; Jamaati, M.; Tafreshi, S.S. A review on theoretical studies of structural and optoelectronic properties of FA-based perovskite materials with a focus on FAPbI3. Int. J. Energy Res. 2022, 46, 13117–13151. [Google Scholar] [CrossRef]
- Tao, S.; Schmidt, I.; Brocks, G.; Jiang, J.; Tranca, I.; Meerholz, K.; Olthof, S. Absolute energy level positions in tin and lead-based halide perovskites. Nat. Commun. 2019, 10, 2560. [Google Scholar] [CrossRef]
- Nishat, M.; Hossain, K.; Hossain, R.; Khanom, S.; Ahmed, F.; Hossain, A. Role of metal and anions in organo-metal halide perovskites CH3NH3MX3 (M: Cu, Zn, Ga, Ge, Sn, Pb; X: Cl, Br, I) on structural and optoelectronic properties for photovoltaic applications. RSC Adv. 2022, 12, 13281–13294. [Google Scholar] [CrossRef]
- Stoumpos, C.C.; Malliakas, C.D.; Kanatzidis, M.G. Semiconducting tin and lead iodide perovskites with organic cations: Phase transitions, high mobilities, and near-infrared photoluminescent properties. Inorg. Chem. 2013, 52, 9019–9038. [Google Scholar] [CrossRef]
- Chung, I.; Song, J.-H.; Im, J.; Androulakis, J.; Malliakas, C.D.; Li, H.; Freeman, A.J.; Kenney, J.T.; Kanatzidis, M.G. CsSnI3: Semiconductor or metal? high electrical conductivity and strong near-infrared photoluminescence from a single material. High hole mobility and phase-transitions. J. Am. Chem. Soc. 2012, 134, 8579–8587. [Google Scholar] [CrossRef]
- Stoumpos, C.C.; Kanatzidis, M.G. Halide perovskites: Poor man’s high-performance semiconductors. Adv. Mater. 2016, 28, 5778–5793. [Google Scholar] [CrossRef] [PubMed]
- Dong, Q.; Fang, Y.; Shao, Y.; Mulligan, P.; Qiu, J.; Cao, L.; Huang, J. Electron-hole diffusion lengths > 175 μm in solution-grown CH3NH3PbI3 single crystals. Science 2015, 347, 967–970. [Google Scholar] [CrossRef] [PubMed]
- Valverde-Chávez, D.A.; Ponseca, C.S., Jr.; Stoumpos, C.C.; Yartsev, A.; Kanatzidis, M.G.; Sundström, V.; Cooke, D.G. Intrinsic femtosecond charge generation dynamics in single crystal CH3NH3PbI3. Energy Environ. Sci. 2015, 8, 3700–3707. [Google Scholar] [CrossRef]
- Zhang, J.; Yu, C.; Wang, L.; Li, Y.; Ren, Y.; Shum, K. Energy barrier at the N719-dye/CsSnI3 interface for photogenerated holes in dye-sensitized solar cells. Sci. Rep. 2014, 4, 6954. [Google Scholar] [CrossRef]
- Yuan, Y.; Huang, J. Ion migration in organometal trihalide perovskite and its impact on photovoltaic efficiency and stability. Acc. Chem. Res. 2016, 49, 286–293. [Google Scholar] [CrossRef]
- Yin, W.-J.; Shi, T.; Yan, Y. Unusual defect physics in CH3NH3PbI3 perovskite solar cell absorber. Appl. Phys. Lett. 2014, 104, 063903. [Google Scholar] [CrossRef]
- Niu, T.; Xue, Q.; Yip, H.-L. Molecularly Engineered Interfaces in Metal Halide Perovskite Solar Cells. J. Phys. Chem. Lett. 2021, 12, 4882–4901. [Google Scholar] [CrossRef]
- Hoke, E.T.; Slotcavage, D.J.; Dohner, E.R.; Bowring, A.R.; Karunadasa, H.I.; McGehee, M.D. Reversible photo-induced trap formation in mixed-halide hybrid perovskites for photovoltaics. Chem. Sci. 2015, 6, 613–617. [Google Scholar] [CrossRef]
- Boyd, C.C.; Cheacharoen, R.; Leijtens, T.; McGehee, M.D. Understanding degradation mechanisms and improving stability of perovskite photovoltaics. Chem. Rev. 2019, 119, 3418–3451. [Google Scholar] [CrossRef]
- Kulbak, M.; Gupta, S.; Kedem, N.; Levine, I.; Bendikov, T.; Hodes, G.; Cahen, D. Cesium enhances long-term stability of lead bromide perovskite-based solar cells. J. Phys. Chem. Lett. 2016, 7, 167–172. [Google Scholar] [CrossRef]
- Frost, J.M.; Butler, K.T.; Brivio, F.; Hendon, C.H.; van Schilfgaarde, M.; Walsh, A. Atomistic origins of high-performance in hybrid halide perovskite solar cells. Nano Lett. 2014, 14, 2584–2590. [Google Scholar] [CrossRef] [PubMed]
- Pearson, A.J.; Eperon, G.E.; Hopkinson, P.E.; Habisreutinger, S.N.; Wang, J.T.-W.; Snaith, H.J.; Greenham, N.C. Oxygen degradation in mesoporous Al2O3/CH3NH3PbI3-xClx perovskite solar cells: Kinetics and mechanisms. Adv. Energy Mater. 2016, 6, 1600014. [Google Scholar] [CrossRef]
- Bryant, D.; Aristidou, N.; Pont, S.; Sanchez-Molina, I.; Chotchunangatchaval, T.; Wheeler, S.; Durrant, J.R.; Haque, S.A. Light and oxygen induced degradation limits the operational stability of methylammonium lead triiodide perovskite solar cells. Energy Environ. Sci. 2016, 9, 1655–1660. [Google Scholar] [CrossRef]
- Noel, N.K.; Stranks, S.D.; Abate, A.; Wehrenfennig, C.; Guarnera, S.; Haghighirad, A.-A.; Sadhanala, A.; Eperon, G.E.; Pathak, S.K.; Johnston, M.B.; et al. Lead-free organic–inorganic tin halide perovskites for photovoltaic applications. Energy Environ. Sci. 2014, 7, 3061–3068. [Google Scholar] [CrossRef]
- Leijtens, T.; Eperon, G.E.; Pathak, S.; Abate, A.; Lee, M.M.; Snaith, H.J. Overcoming ultraviolet light instability of sensitized TiO2 with meso-superstructured organometal tri-halide perovskite solar cells. Nat. Commun. 2013, 4, 2885. [Google Scholar] [CrossRef] [PubMed]
- Pisoni, A.; Jaćimović, J.; Barišić, O.S.; Spina, M.; Gaál, R.; Forró, L.; Horváth, E.J. Ultra-low thermal conductivity in organic-inorganic hybrid perovskite CH3NH3PbI3. Phys. Chem. Lett. 2014, 5, 2488–2492. [Google Scholar] [CrossRef] [PubMed]
- Jeon, N.J.; Noh, J.H.Y.C.; Kim, Y.C.; Yang, W.S.; Ryu, S.; Seok, S.I. Solvent engineering for high-performance inorganic–organic hybrid perovskite solar cells. Nat. Mater. 2015, 13, 897–903. [Google Scholar] [CrossRef]
- Jørgensen, M.; Norrman, K.; Gevorgyan, S.A.; Tromholt, T.; Andreasen, B.; Krebs, F.C. Stability of polymer solar cells. Adv. Mater. 2012, 24, 580–612. [Google Scholar] [CrossRef]
- Bailie, C.D.; Unger, E.L.; Zakeeruddin, S.M.; Grätzel, M.; McGehee, M.D. Melt-infiltration of spiro-OMeTAD and thermal instability of solid-state dye-sensitized solar cells. Phys. Chem. Chem. Phys. 2014, 16, 4864–4870. [Google Scholar] [CrossRef]
- Malinauskas, T.; Tomkute-Luksiene, D.; Sens, R.; Daskeviciene, M.; Send, R.; Wonneberger, H.; Jankauskas, V.; Bruder, I.; Getautis, V. Enhancing thermal stability and lifetime of solid-state dye-sensitized solar cells via molecular engineering of the hole-transporting material spiro-OMeTAD. ACS Appl. Mater. Interfaces 2015, 7, 11107–11116. [Google Scholar] [CrossRef]
- Jena, A.K.; Ikegami, M.; Miyasaka, T. Severe morphological deformation of spiro-OMeTAD in (CH3NH3)PbI3 solar cells at high temperature. ACS Energy Lett. 2017, 2, 1760–1761. [Google Scholar] [CrossRef]
- Ferdowsi, P.; Ochoa-Martinez, E.; Alonso, S.S.; Steiner, U.; Saliba, M. Ultrathin polymeric films for interfacial passivation in wide band-gap perovskite solar cells. Sci. Rep. 2020, 10, 22260. [Google Scholar] [CrossRef] [PubMed]
- Zhao, P.; Kim, B.J.; Jung, H.S. Passivation in perovskite solar cells: A review. Mater. Today Energy 2018, 7, 267–286. [Google Scholar] [CrossRef]
- Wang, X.; Lian, X.; Zhang, Z.; Gao, H. Could nanocomposites continue the success of halide perovskites? ACS Energy Lett. 2019, 4, 1446–1454. [Google Scholar] [CrossRef]
- Li, J.; Bu, T.; Lin, Z.; Mo, Y.; Chai, N.; Gao, X.; Ji, M.; Zhang, X.-L.; Cheng, Y.-B.; Huang, F. Efficient and stable perovskite solar cells via surface passivation of an ultrathin hydrophobic organic molecular layer. Chem. Eng. J. 2021, 405, 126712. [Google Scholar] [CrossRef]
- Xin, Y.; Zhao, H.; Zhang, J. Highly stable and luminescent perovskite−polymer composites from a convenient and universal strategy. ACS Appl. Mater. Interfaces 2018, 10, 4971–4980. [Google Scholar] [CrossRef]
- Su, P.; Huang, Y.; Li, Y.; Hu, C.; Shi, W. Improving photoluminescent water-stability of CsPbBr3 perovskite nanocrystals via constructing nanocrystals/polymer composites with hydrophobic surfaces for LED applications. Surf. Interfaces 2023, 37, 102719. [Google Scholar] [CrossRef]
- Wang, Z.; Fu, R.; Li, F.; Xie, H.; He, P.; Sha, Q.; Tang, Z.; Wang, N.; Zhong, H. One-step polymeric melt encapsulation method to prepare CsPbBr3 perovskite quantum dots/polymethyl methacrylate composite with high performance. Adv. Funct. Mater. 2021, 31, 2010009. [Google Scholar] [CrossRef]
- Kim, H.-J.; Oh, H.; Kim, T.; Kim, D.; Park, M. Stretchable photodetectors based on electrospun polymer/perovskite composite nanofibers. ACS Appl. Nano Mater. 2022, 5, 1308–1316. [Google Scholar] [CrossRef]
- Bkkar, M.A.; Olekhnovich, R.O.; Uspenskaya, M.V. Perovskite-polymer nanocomposites based on nanofibers for flexible solar cells. In Proceedings of the International Conference Laser Optics (ICLO), Saint Petersburg, Russia, 21–24 June 2022. [Google Scholar]
- Manshor, N.A.; Wali, Q.; Wong, K.K.; Muzakir, S.K.; Fakharuddin, A.; Schmidt-Mende, L.; Jose, R. Humidity versus photo-stability of metal halide perovskite films in a polymer matrix. Phys. Chem. Chem. Phys. 2016, 18, 21629–21639. [Google Scholar] [CrossRef]
- Panda, S.; Soni, A.; Gupta, V.; Niranjan, R.; Panda, D. PVDF-directed synthesis, stability and anion exchange of cesium lead bromide nanocrystals. Methods Appl. Fluoresc. 2022, 10, 044005. [Google Scholar] [CrossRef]
- Marques, A.S.; Szostak, R.; Marchezi, P.E.; Nogueira, A.F. Perovskite solar cells based on polyaniline derivatives as hole transport materials. J. Phys. Energy 2019, 1, 015004. [Google Scholar] [CrossRef]
- Mei, Y.; Shen, Z.; Kundu, S.; Dennis, E.; Pang, S.; Tan, F.; Yue, G.; Gao, Y.; Dong, C.; Liu, R.; et al. Perovskite solar cells with polyaniline hole transport layers surpassing a 20% power conversion efficiency. Chem. Mater. 2021, 33, 4679–4687. [Google Scholar] [CrossRef]
- Han, T.-H.; Lee, J.-W.; Choi, C.; Tan, S.; Lee, C.; Zhao, Y.; Dai, Z.; De Marco, N.; Lee, S.-J.; Bae, S.-H.; et al. Perovskite-polymer composite cross-linker approach for highly-stable and efficient perovskite solar cells. Nat. Commun. 2019, 10, 520. [Google Scholar] [CrossRef] [PubMed]
- Wang, H.; Rahaq, Y.; Kumar, V. A composite light-harvesting layer from photoactive polymer and halide perovskite for planar heterojunction solar cells. Sci. Rep. 2016, 6, 29567. [Google Scholar] [CrossRef] [PubMed]
- Guo, Y.; Shoyama, K.; Sato, W.; Nakamura, E. Polymer stabilization of lead(II) perovskite cubic nanocrystals for semitransparent solar cells. Adv. Energy Mater. 2016, 6, 1502317. [Google Scholar] [CrossRef]
- Masi, S.; Rizzo, A.; Aiello, F.; Balzano, F.; Uccello-Barretta, G.; Listorti, A.; Giglia, G.; Colella, S. Multiscale morphology design of hybrid halide perovskites through a polymeric template. Nanoscale 2015, 7, 18956–18963. [Google Scholar] [CrossRef]
- Chang, S.; Bai, Z.; Zhong, H. In Situ fabricated perovskite nanocrystals: A revolution in optical materials. Adv. Opt. Mater. 2018, 6, 1800380. [Google Scholar] [CrossRef]
- Liang, S.; Zhang, M.; Biesold, G.M.; Choi, W.; He, Y.; Li, Z.; Shen, D.; Lin, Z. Recent advances in synthesis, properties, and applications of metal halide perovskite nanocrystals/polymer nanocomposites. Adv. Mater. 2021, 33, 2005888. [Google Scholar] [CrossRef]
- Carrizo, A.F.; Belmonte, G.K.; Santos, F.S.; Backes, C.W.; Strapasson, G.B.; Schmidt, L.C.; Rodembusch, F.S.; Weibel, D.E. Highly water-stable polymer−perovskite nanocomposites. ACS Appl. Mater. Interfaces 2021, 13, 59252–59262. [Google Scholar] [CrossRef]
- Kafetzi, M.; Pispas, S.; Mousdis, G. Hybrid perovskite/polymer materials: Preparation and physicochemical properties. J. Compos. Sci. 2021, 5, 304. [Google Scholar] [CrossRef]
- Bkkar, M.; Olekhnovich, R.; Kremleva, A.; Sitnikova, V.; Kovach, Y.; Zverkov, N.; Uspenskaya, M. Influence of electrospinning setup parameters on properties of polymer-perovskite nanofibers. Polymers 2023, 15, 731. [Google Scholar] [CrossRef] [PubMed]
- Hu, H.; Zuo, S.; Yin, Z.; Yan, S.; Zhao, H.; An, P.; Chu, S.; Zheng, L.; Li, H.; Zhang, J. Novel MAPbBr3 perovskite/ polymer nanocomposites with luminescence and self-healing properties: In suit fabrication and structure characterization. Opt. Mater. 2021, 119, 111405. [Google Scholar] [CrossRef]
- Wang, Y.; He, J.; Chen, H.; Chen, J.; Zhu, R.; Ma, P.; Towers, A.; Lin, Y.; Gesquiere, A.J.; Wu, S.-T.; et al. Ultrastable, highly luminescent organic–inorganic perovskite–polymer composite films. Adv. Mater. 2016, 28, 10710–10717. [Google Scholar] [CrossRef] [PubMed]
- Wang, F.; Geng, W.; Zhou, Y.; Fang, H.-H.; Tong, C.-J.; Loi, M.A.; Liu, L.-M.; Zhao, N. Phenylalkylamine passivation of organolead halide perovskites enabling high-efficiency and air-stable photovoltaic cells. Adv. Mater. 2016, 28, 9986–9992. [Google Scholar] [CrossRef]
- Girish, K.H.; Vishnumurthy, K.A.; Roopa, T.S. Role of conducting polymers in enhancing the stability and performance of perovskite solar cells: A brief review. Mater. Today Sustain. 2022, 17, 100090. [Google Scholar] [CrossRef]
- Yu, J.C.; Lee, A.-Y.; Kim, D.B.; Jung, E.D.; Kim, D.W.; Song, M.H. Enhancing the performance and stability of perovskite nanocrystal light-emitting diodes with a polymer matrix. Adv. Mater. Technol. 2017, 2, 1700003. [Google Scholar] [CrossRef]
- Jiang, J.; Wang, Q.; Jin, Z.; Zhang, X.; Lei, J.; Bin, H.; Zhang, Z.-G.; Li, Y.; Liu, S. Polymer Doping for High-Efficiency Perovskite Solar Cells with Improved Moisture Stability. Adv. Energy Mater. 2017, 8, 1701757. [Google Scholar] [CrossRef]
- Cai, W.; Chen, Z.; Chen, Z.; Li, Z.; Yan, L.; Zhang, D.; Liu, L.; Qing-hua Xu, Q.-H.; Ma, Y.; Huang, F.; et al. Polymer-Assisted In Situ Growth of All-Inorganic Perovskite Nanocrystal Film for Efficient and Stable Pure-Red Light-Emitting Devices. ACS Appl. Mater. Interfaces 2018, 10, 42564–42572. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mavuso, M.A.; Msimanga, M. Mitigating Environmental Effects in Halide Perovskites through Hybrid Perovskite-Polymer Nanocomposites: A Short Review. Photonics 2023, 10, 1242. https://doi.org/10.3390/photonics10111242
Mavuso MA, Msimanga M. Mitigating Environmental Effects in Halide Perovskites through Hybrid Perovskite-Polymer Nanocomposites: A Short Review. Photonics. 2023; 10(11):1242. https://doi.org/10.3390/photonics10111242
Chicago/Turabian StyleMavuso, Mlungisi Arnold, and Mandla Msimanga. 2023. "Mitigating Environmental Effects in Halide Perovskites through Hybrid Perovskite-Polymer Nanocomposites: A Short Review" Photonics 10, no. 11: 1242. https://doi.org/10.3390/photonics10111242
APA StyleMavuso, M. A., & Msimanga, M. (2023). Mitigating Environmental Effects in Halide Perovskites through Hybrid Perovskite-Polymer Nanocomposites: A Short Review. Photonics, 10(11), 1242. https://doi.org/10.3390/photonics10111242