Efficient Trichromatic Nd:YLF Laser Emitting at 1047 nm, 1053 nm and 1314 nm
Abstract
1. Introduction
2. Materials and Methods
Wavelength Selection
3. Results and Discussion
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Pavel, N. Simultaneous Dual-Wavelength Emission at 0.90 and 1.06 µm in Nd-Doped Laser Crystals. Laser Phys. 2010, 20, 215–221. [Google Scholar] [CrossRef]
- Walsh, B.M. Dual Wavelength Lasers. Laser Phys. 2010, 20, 622–634. [Google Scholar] [CrossRef]
- Hussain, T.; Gondal, M.A. Laser Induced Breakdown Spectroscopy (LIBS) as a Rapid Tool for Material Analysis. J. Phys. Conf. Ser. 2013, 439, 012050. [Google Scholar] [CrossRef]
- Basler, C.; Brandenburg, A.; Michalik, K.; Mory, D. Comparison of Laser Pulse Duration for the Spatially Resolved Measurement of Coating Thickness with Laser-Induced Breakdown Spectroscopy. Sensors 2019, 19, 4133. [Google Scholar] [CrossRef]
- Basler, C.; Kappeler, M.; Carl, D. Depth-Resolved Elemental Analysis on Moving Electrode Foils with Laser-Induced Breakdown Spectroscopy. Sensors 2023, 23, 1082. [Google Scholar] [CrossRef] [PubMed]
- Ahmad, H.; Muhammad, F.D.; Pua, C.H.; Thambiratnam, K. Dual-Wavelength Fiber Lasers for the Optical Generation of Microwave and Terahertz Radiation. IEEE J. Sel. Top. Quantum Electron. 2014, 20, 166–173. [Google Scholar] [CrossRef]
- Angeluts, A.A.; Bezotosnyi, V.V.; Cheshev, E.A.; Goltsman, G.N.; Finkel, M.I.; Seliverstov, S.V.; Evdokimov, M.N.; Gorbunkov, M.V.; Kitaeva, G.K.; Koromyslov, A.L. Compact 1.64 THz Source Based on a Dual-Wavelength Diode End-Pumped Nd:YLF Laser with a Nearly Semiconfocal Cavity. Laser Phys. Lett. 2014, 11, 015004. [Google Scholar] [CrossRef][Green Version]
- Polyakov, V.M.; Vitkin, V.V.; Lychagin, D.I.; Krylov, A.A.; Buchenkov, V.A.; Kashcheev, S.V. Compact Q-Switched High Repetition Rate Nd:YLF Laser with 100 MJ Pulse Energy for Airborne Lidars. In Proceedings of the 2014 International Conference Laser Optics, St. Petersburg, Russia, 30 June–4 July 2014; IEEE Computer Society: Piscataway, NJ, USA, 2014. [Google Scholar]
- Geskus, D.; Jakutis-Neto, J.; Pask, H.M.; Wetter, N.U. Intracavity Frequency Converted Raman Laser Producing 10 Deep Blue to Cyan Emission Lines with up to 094 W Output Power. Opt. Lett. 2014, 39, 6799–6802. [Google Scholar] [CrossRef] [PubMed]
- Ferreira, M.S.; Wetter, N.U. Diode-Side-Pumped, Intracavity Nd:YLF/KGW/LBO Raman Laser at 573 Nm for Retinal Photocoagulation. Opt. Lett. 2021, 46, 508–511. [Google Scholar] [CrossRef]
- Geskus, D.; Neto, J.J.; Reijn, S.-M.; Pask, H.M.; Wetter, N.U. Quasi-Continuous Wave Raman Lasers at 990 and 976 Nm Based on a Three-Level Nd:YLF Laser. Opt. Lett. 2014, 39, 2982–2985. [Google Scholar] [CrossRef] [PubMed]
- Demirbas, U.; Uecker, R.; Fujimoto, J.G.; Leitenstorfer, A. Multicolor Lasers Using Birefringent Filters: Experimental Demonstration with Cr:Nd:GSGG and Cr:LiSAF. Opt. Express 2017, 25, 2594–2607. [Google Scholar] [CrossRef]
- Wetter, N.U.; Camargo, F.A.; Sousa, E.C. Mode-Controlling in a 7.5 cm Long, Transversally Pumped, High Power Nd:YVO4 Laser. J. Opt. A Pure Appl. Opt. 2008, 10, 104012. [Google Scholar] [CrossRef]
- Deana, A.M.; Ranieri, I.M.; Baldochi, S.L.; Wetter, N.U. Compact, Diode-Side-Pumped and Q-Switched Nd:YLiF4 Laser Cavity Operating at 1053 Nm with Diffraction Limited Beam Quality. Appl. Phys. B 2012, 106, 877–880. [Google Scholar] [CrossRef]
- Zhang, G.; Liu, T.; Shen, Y.; Zhao, C.; Huang, B.; Kang, Z.; Qin, G.; Liu, Q.; Fu, X. 516 mW, nanosecond Nd:LuAG laser Q-switched by gold nanorods. Chin. Opt. Lett. 2018, 16, 030011. [Google Scholar] [CrossRef]
- Jahid, A.; Alsharif, M.H.; Hall, T.J. A Contemporary Survey on Free Space Optical Communication: Potentials, Technical Challenges, Recent Advances and Research Direction. J. Netw. Comput. Appl. 2022, 200, 103311. [Google Scholar] [CrossRef]
- Kores, C.C.; Jakutis-Neto, J.; Geskus, D.; Pask, H.M.; Wetter, N.U. Diode-Side-Pumped Continuous Wave Nd3+:YVO4 Self-Raman Laser at 1176 nm. Opt. Lett. 2015, 40, 3524–3527. [Google Scholar] [CrossRef]
- Czeranowsky, C. Resonatorinterne Frequenzverdopplung von Diodengepumpten Neodym-Lasern Mit Hohen Ausgangsleistungen Im Blauen Spektralbereich; University of Hamburg: Hamburg, Germany, 2002. [Google Scholar]
- Koechner, W.; Bass, M. Solid-State Lasers: Advanced Texts in Physics; Springer: New York, NY, USA, 2003; ISBN 978-0-387-95590-2. [Google Scholar]
- Nunez Portela, M.; Wetter, N.U.; Zondy, J.J.; Cruz, F.C. A Single-Frequency, Diode-Pumped Nd:YLF Laser at 657 Nm: A Frequency and Intensity Noise Comparison with an Extended Cavity Diode Laser. Laser Phys. 2013, 23, 025801. [Google Scholar] [CrossRef]
- Vollmar, W.; Knights, M.G.; Rines, G.A.; Mccarthy, J.C.; Chicklis, E.P. Five-Color Nd:YLF Laser. In Proceedings of the Conference on Lasers and Electro-Optics, Baltimore, MD, USA, 17–20 May 1983; OSA: Washington, DC, USA, 1983; p. THM2. [Google Scholar]
- Wetter, N.U.; Deana, A.M. Influence of Pump Bandwidth on the Efficiency of Side-Pumped, Double-Beam Mode-Controlled Lasers: Establishing a New Record for Nd:YLiF4 Lasers Using VBG. Opt. Express 2015, 23, 9379–9387. [Google Scholar] [CrossRef] [PubMed]
- Damzen, M.J.; Trew, M.; Crofts, G.J.; Rosas, E. 22.5W Continuous-Wave Nd:YVO4 Grazing-Incidence Laser with 62% Conversion Efficiency. In Proceedings of the Advanced Solid-State Lasers, Seattle, WA, USA, 28–31 January 2001; OSA: Washington, DC, USA, 2001; p. MD4. [Google Scholar]
- Damzen, M.J.; Trew, M.; Rosas, E.; Crofts, G.J. Continuous-Wave Nd:YVO4 Grazing-Incidence Laser with 22.5 W Output Power and 64% Conversion Efficiency. Opt. Commun. 2001, 196, 237–241. [Google Scholar] [CrossRef]
- Prado, F.M.; Franco, T.J.; Vieira, T.A.; Wetter, N.U. High Power Nd:YLF Four-Level Lasers with 68% Slope Efficiency. Appl. Opt. 2023, 62, C49–C52. [Google Scholar] [CrossRef]
- Prado, F.; Wetter, N.U. Nd:YLF Laser Pumped at 797 Nm with 68% Slope Efficiency. In Proceedings of the Solid State Lasers XXXI: Technology and Devices, San Francisco, CA, USA, 22–27 January 2022; Clarkson, W.A., Shori, R.K., Eds.; SPIE: Bellingham, WA, USA, 2022; p. 18. [Google Scholar]
- Wetter, N.U.; Deana, A.M. Diode-Side-Pumped Nd:YLiF4 Laser Emitting at 1053 nm with 53.6% Optical Efficiency and Diffraction-Limited Beam Quality. Laser Phys. Lett. 2013, 10, 035807. [Google Scholar] [CrossRef]
- Deana, A.M.; Lopez, M.A.P.A.; Wetter, N.U. Diode-Side-Pumped Nd:YLF Laser Emitting at 1313 Nm Based on DBMC Technology. Opt. Lett. 2013, 38, 4088–4091. [Google Scholar] [CrossRef]
- Vieira, T.A.; Prado, F.M.; Wetter, N.U. Nd:YLF Laser at 1053 Nm Diode Side Pumped at 863 nm with a near Quantum-Defect Slope Efficiency. Opt. Laser Technol. 2022, 149, 107818. [Google Scholar] [CrossRef]
- Vieira, T.A.; Prado, F.M.; Wetter, N.U. Near Quantum Limited Slope Efficiency Nd:YLF4 Laser. In Proceedings of the Laser Congress 2021 (ASSL, LAC), Washington, DC, USA, 3–7 October 2021; Optica Publishing Group: Washington, DC, USA, 2021; p. AW3A.6. [Google Scholar]
- Prado, F.M.; Franco, T.J.; Wetter, N.U. Sub-Nanosecond, 41 MJ Pulse Energy, Passively Q-Switched Nd:YLF Laser. Opt. Laser Technol. 2023, 162, 109257. [Google Scholar] [CrossRef]
- Yu, H.; Wu, K.; Yao, B.; Zhang, H.; Wang, Z.; Wang, J.; Zhang, X.; Jiang, M. Efficient Triwavelength Laser with a Nd:YGG Garnet Crystal. Opt. Lett. 2010, 35, 1801–1803. [Google Scholar] [CrossRef] [PubMed]
- Hou, J.; Zheng, L.H.; He, J.L.; Xu, J.; Zhang, B.T.; Wang, Z.W.; Lou, F.; Wang, R.H.; Liu, X.M. A Tri-Wavelength Synchronous Mode-Locked Nd:SYSO Laser with a Semiconductor Saturable Absorber Mirror. Laser Phys. Lett. 2014, 11, 035803. [Google Scholar] [CrossRef]
- Lin, Z.; Wang, Y.; Xu, B.; Xu, H.; Cai, Z. Diode-Pumped Simultaneous Multi-Wavelength Linearly Polarized Nd:YVO4 Laser at 1062, 1064 and 1066 nm. Laser Phys. 2016, 26, 015801. [Google Scholar] [CrossRef]
- Chen, L.; Wang, Z.; Liu, H.; Zhuang, S.; Yu, H.; Guo, L.; Lan, R.; Wang, J.; Xu, X. Continuous-Wave Tri-Wavelength Operation at 1064, 1319 and 1338 Nm of LD End-Pumped Nd:YAG Ceramic Laser. Opt. Express 2010, 18, 22167–22173. [Google Scholar] [CrossRef]
- Xu, B.; Camy, P.; Doualan, J.-L.; Braud, A.; Cai, Z.; Balembois, F.; Moncorgé, R. Frequency Doubling and Sum-Frequency Mixing Operation at 4692, 471, and 473 Nm in Nd:YAG. J. Opt. Soc. Am. B 2012, 29, 346–350. [Google Scholar] [CrossRef]
- Tu, Z.; Dai, S.; Zhu, S.; Yin, H.; Li, Z.; Ji, E.; Chen, Z. Efficient High-Power Orthogonally-Polarized Dual-Wavelength Nd:YLF Laser at 1314 and 1321 nm. Opt. Express 2019, 27, 32949–32957. [Google Scholar] [CrossRef] [PubMed]
- Cho, C.Y.; Huang, T.L.; Wen, S.M.; Huang, Y.J.; Huang, K.F.; Chen, Y.F. Nd:YLF Laser at Cryogenic Temperature with Orthogonally Polarized Simultaneous Emission at 1047 nm and 1053 nm. Opt. Express 2014, 22, 25318–25323. [Google Scholar] [CrossRef]
- Turri, G.; Webster, S.; Bass, M.; Toncelli, A. Temperature-Dependent Stimulated Emission Cross-Section in Nd3+:YLF Crystal. Materials 2021, 14, 431. [Google Scholar] [CrossRef] [PubMed]
- Xu, S.; Gao, S. A New Wavelength Laser at 1370 nm Generated by Nd:YLF Crystal. Mater. Lett. 2016, 183, 451–453. [Google Scholar] [CrossRef]
- Pollnau, M.; Hardman, P.J.; Kern, M.A.; Clarkson, W.A.; Hanna, D.C. Upconversion-Induced Heat Generation and Thermal Lensing in Nd:YLF and Nd:YAG. Phys. Rev. B 1998, 58, 16076–16092. [Google Scholar] [CrossRef]
- Kubodera, K.; Otsuka, K. Single-Transverse-Mode LiNdP4O12 Slab Waveguide Laser. J. Appl. Phys. 1979, 50, 653–659. [Google Scholar] [CrossRef]
- Siegman, A.E. Choice of Clip Levels for Beam Width Measurements Using Knife-Edge Techniques. IEEE J. Quantum Electron. 1991, 27, 1098–1104. [Google Scholar] [CrossRef]
- Siegman, A.E. How to (Maybe) Measure Laser Beam Quality. In Proceedings of the DPSS (Diode Pumped Solid State) Lasers: Applications and Issues, Washington, DC, USA, 1–4 December 1998; OSA: Washington, DC, USA, 1998; p. MQ1. [Google Scholar]
Nd:YLF | 4F3/2 → 4I11/2 | 4F3/2 → 4I13/2 | ||
---|---|---|---|---|
1047 nm (π) | 1053 nm (σ) | 1321 nm (π) | 1314 nm (σ) | |
σe (10−19 cm2) | 1.8 | 1.2 | 0.27 | 0.33 |
Nd:YLF Laser | Laser Emission Regime | ||||||
---|---|---|---|---|---|---|---|
1314 nm | 1047 nm | 1053 nm | 1047 + 1053 nm | 1047 + 1314 nm | 1053 + 1314 nm | 1047 + 1053 + 1314 nm | |
Peak Output Power (W) | 726 ± 3 | 434 ± 11 | 124 ± 1 | 514 ± 4 | 400 ± 9 | 102 ± 1 | 574 ± 3 |
Pulse width (µs) | 342 ± 0.1 | 315 ± 1 | 338 ± 2 | 332 ± 0.2 | 314 ± 1 | 335 ± 1 | 331 ± 0.2 |
Slope efficiency (%) | 53 ± 1 | 35 ± 1 | 43 ± 0.5 | 39 ± 0.5 | 31 ± 0.5 | 41 ± 0.4 | 42 ± 1 |
Optical efficiency (%) | 49 ± 0.3 | 29 ± 1 | 40 ± 0.2 * | 34 ± 0.3 | 27 ± 1 | 37.5 ± 0.2 * | 38 ± 0.3 |
Wavelength | ||
---|---|---|
x | y | |
1314 nm | 4.2 ± 0.1 | 2.93 ± 0.4 |
1047 nm | 2.4 ± 0.3 | 2.2 ± 0.4 |
1053 nm | 4.1 ± 0.2 | 2.4 ± 0.1 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Prado, F.M.; Franco, T.J.; Wetter, N.U. Efficient Trichromatic Nd:YLF Laser Emitting at 1047 nm, 1053 nm and 1314 nm. Photonics 2023, 10, 1146. https://doi.org/10.3390/photonics10101146
Prado FM, Franco TJ, Wetter NU. Efficient Trichromatic Nd:YLF Laser Emitting at 1047 nm, 1053 nm and 1314 nm. Photonics. 2023; 10(10):1146. https://doi.org/10.3390/photonics10101146
Chicago/Turabian StylePrado, Felipe Maia, Tomás Junqueira Franco, and Niklaus Ursus Wetter. 2023. "Efficient Trichromatic Nd:YLF Laser Emitting at 1047 nm, 1053 nm and 1314 nm" Photonics 10, no. 10: 1146. https://doi.org/10.3390/photonics10101146
APA StylePrado, F. M., Franco, T. J., & Wetter, N. U. (2023). Efficient Trichromatic Nd:YLF Laser Emitting at 1047 nm, 1053 nm and 1314 nm. Photonics, 10(10), 1146. https://doi.org/10.3390/photonics10101146