In-Situ Detection for Atomic Density in the K-Rb-21Ne Co-Magnetometer via an Optical Heterodyne Interferometry
Abstract
:1. Introduction
2. Theoretical Analysis
2.1. Atomic Spin Ensembles Refractive Index Model
2.2. Optical Heterodyne Technique-Based Detection Scheme
3. Experimental Setup
4. Results and Discussion
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Boto, E.; Meyer, S.S.; Shah, V.; Alem, O.; Knappe, S.; Kruger, P.; Fromhold, T.M.; Lim, M.; Glover, P.M.; Morris, P.G.; et al. A new generation of magnetoencephalography: Room temperature measurements using optically pumped magnetometers. NeuroImage 2017, 149, 404–414. [Google Scholar] [CrossRef]
- Kominis, I.; Kornack, T.; Allred, J.; Romalis, M.V. A subfemtotesla multichannel atomic magnetometer. Nature 2003, 422, 596–599. [Google Scholar] [CrossRef]
- Kornack, T.; Ghosh, R.; Romalis, M.V. Nuclear spin gyroscope based on an atomic comagnetometer. Phys. Rev. Lett. 2005, 95, 230801. [Google Scholar] [CrossRef]
- Jia, Y.; Liu, Z.; Zhou, B.; Liang, X.; Wu, W.; Peng, J.; Ding, M.; Zhai, Y.; Fang, J. Pump beam influence on spin polarization homogeneity in the nuclear magnetic resonance gyroscope. J. Phys. D Appl. Phys. 2019, 52, 355001. [Google Scholar]
- Li, R.; Fan, W.; Jiang, L.; Duan, L.; Quan, W.; Fang, J. Rotation sensing using a K-Rb-Ne 21 comagnetometer. Phys. Rev. A 2016, 94, 032109. [Google Scholar] [CrossRef]
- Cai, Q.; Yang, G.; Quan, W.; Song, N.; Tu, Y.; Liu, Y. Error analysis of the K-Rb-21Ne comagnetometer space-stable inertial navigation system. Sensors 2018, 18, 670. [Google Scholar] [CrossRef]
- Fang, J.; Qin, J. Advances in atomic gyroscopes: A view from inertial navigation applications. Sensors 2012, 12, 6331–6346. [Google Scholar] [CrossRef]
- Allred, J.; Lyman, R.; Kornack, T.; Romalis, M.V. High-sensitivity atomic magnetometer unaffected by spin-exchange relaxation. Phys. Rev. Lett. 2002, 89, 130801. [Google Scholar] [CrossRef]
- Fan, W.; Liu, G.; Li, R.; Quan, W.; Jiang, L.; Duan, L. A three-axis atomic magnetometer for temperature-dependence measurements of fields in a magnetically shielded environment. Meas. Sci. Technol. 2017, 28, 095007. [Google Scholar] [CrossRef]
- Hunter, L.; Gordon, J.; Peck, S.; Ang, D.; Lin, J.F. Using the earth as a polarized electron source to search for long-range spin–spin interactions. Science 2013, 339, 928–932. [Google Scholar] [CrossRef]
- Vasilakis, G.; Brown, J.; Kornack, T.; Romalis, M. Limits on New Long Range Nuclear Spin-Dependent Forces Set with a K-3He Comagnetometer. Phys. Rev. Lett. 2009, 103, 261801. [Google Scholar] [CrossRef] [PubMed]
- Bulatowicz, M.; Griffith, R.; Larsen, M.; Mirijanian, J.; Fu, C.; Smith, E.; Snow, W.; Yan, H.; Walker, T. Laboratory search for a long-range t-odd, p-odd interaction from axionlike particles using dual-species nuclear magnetic resonance with polarized 129Xe and 131Xe gas. Phys. Rev. Lett. 2013, 111, 102001. [Google Scholar] [CrossRef]
- Jiang, M.; Su, H.; Garcon, A.; Peng, X.; Budker, D. Search for axion-like dark matter with spin-based amplifiers. Nat. Phys. 2021, 17, 1402–1407. [Google Scholar] [CrossRef]
- Allmendinger, F.; Heil, W.; Karpuk, S.; Kilian, W.; Scharth, A.; Schmidt, U.; Schnabel, A.; Sobolev, Y.; Tullney, K. New Limit on Lorentz-Invariance-and C P T-Violating Neutron Spin Interactions Using a Free-Spin-Precession 3He-129Xe Comagnetometer. Phys. Rev. Lett. 2014, 112, 110801. [Google Scholar] [CrossRef]
- Flambaum, V.; Romalis, M.V. Limits on Lorentz invariance violation from Coulomb interactions in nuclei and atoms. Phys. Rev. Lett. 2017, 118, 142501. [Google Scholar] [CrossRef]
- Smiciklas, M.; Brown, J.; Cheuk, L.; Smullin, S.; Romalis, M.V. New Test of Local Lorentz Invariance Using a 21Ne–Rb–K Comagnetometer. Phys. Rev. Lett. 2011, 107, 171604. [Google Scholar] [CrossRef] [PubMed]
- Yashchuk, V.; Granwehr, J.; Kimball, D.; Rochester, S.; Trabesinger, A.; Urban, J.; Budker, D.; Pines, A. Hyperpolarized xenon nuclear spins detected by optical atomic magnetometry. Phys. Rev. Lett. 2004, 93, 160801. [Google Scholar] [CrossRef] [PubMed]
- Wang, Z.; Liu, S.; Wang, R.; Yuan, L.; Huang, J.; Zhai, Y.; Zou, S. Atomic spin polarization controllability analysis: A novel controllability determination method for spin-exchange relaxation-free co-magnetometers. IEEE/CAA J. Autom. Sin. 2021, 9, 699–708. [Google Scholar] [CrossRef]
- Wang, Z.; Wang, R.; Liu, S.; Xing, L.; Qin, B. Fractional Exponential Feedback Control for Finite-Time Stabilization and Its Application in a Spin-Exchange Relaxation-Free Comagnetometer. IEEE Trans. Cybern. 2022, 1–13. [Google Scholar] [CrossRef]
- Zhao, J.; Liu, G.; Lu, J.; Ding, M.; Ma, Y.; Ji, J.; Yang, K.; Ma, D.; Xing, B.; Zhang, N.; et al. Improvement of spin polarization spatial uniformity in optically pumped atomic magnetometers based on counter-propagating pump beams and atomic diffusion. Meas. Sci. Technol. 2020, 32, 035902. [Google Scholar] [CrossRef]
- Jiang, L.; Quan, W.; Liang, Y.; Liu, J.; Duan, L.; Fang, J. Effects of pump laser power density on the hybrid optically pumped comagnetometer for rotation sensing. Opt. Express 2019, 27, 27420–27430. [Google Scholar] [CrossRef] [PubMed]
- Romalis, M. Hybrid optical pumping of optically dense alkali-metal vapor without quenching gas. Phys. Rev. Lett. 2010, 105, 243001. [Google Scholar] [CrossRef] [PubMed]
- Babcock, E.; Nelson, I.; Kadlecek, S.; Driehuys, B.; Anderson, L.; Hersman, F.W.; Walker, T.G. Hybrid Spin-Exchange Optical Pumping of 3He. Phys. Rev. Lett. 2003, 91, 123003. [Google Scholar] [CrossRef] [PubMed]
- Chen, W.; Gentile, T.R.; Walker, T.; Babcock, E. Spin-exchange optical pumping of He 3 with Rb-K mixtures and pure K. Phys. Rev. A 2007, 75, 013416. [Google Scholar] [CrossRef]
- Wei, K.; Zhao, T.; Fang, X.; Zhai, Y.; Li, H.; Quan, W. In situ measurement of the density ratio of K-Rb hybrid vapor cell using spin-exchange collision mixing of the K and Rb light shifts. Opt. Express 2019, 27, 16169–16183. [Google Scholar] [CrossRef]
- Ito, Y.; Sato, D.; Kamada, K.; Kobayashi, T. Optimal densities of alkali metal atoms in an optically pumped K–Rb hybrid atomic magnetometer considering the spatial distribution of spin polarization. Opt. Express 2016, 24, 15391–15402. [Google Scholar] [CrossRef]
- Alcock, C.; Itkin, V.; Horrigan, M. Vapour pressure equations for the metallic elements: 298–2500K. Can. Metall. Q. 1984, 23, 309–313. [Google Scholar] [CrossRef]
- Ito, Y.; Ohnishi, H.; Kamada, K.; Kobayashi, T. Development of an optically pumped atomic magnetometer using a K-Rb hybrid cell and its application to magnetocardiography. Aip Adv. 2012, 2, 032127. [Google Scholar] [CrossRef]
- Vliegen, E.; Kadlecek, S.; Anderson, L.; Walker, T.; Erickson, C.; Happer, W. Faraday rotation density measurements of optically thick alkali metal vapors. Nucl. Instruments Methods Phys. Res. Sect. A Accel. Spectrometers Detect. Assoc. Equip. 2001, 460, 444–450. [Google Scholar] [CrossRef]
- Chann, B.; Babcock, E.; Anderson, L.; Walker, T. Measurements of 3 He spin-exchange rates. Phys. Rev. A 2002, 66, 032703. [Google Scholar] [CrossRef]
- Babcock, E.D. Spin-Exchange Optical Pumping with Alkali-Metal Vapors. Ph.D. Thesis, The University of Wisconsin-Madison, Madison, WI, USA, 2005. [Google Scholar]
- Zhang, H.; Zou, S.; Chen, X.; Ding, M.; Shan, G.; Hu, Z.; Quan, W. On-site monitoring of atomic density number for an all-optical atomic magnetometer based on atomic spin exchange relaxation. Opt. Express 2016, 24, 17234–17241. [Google Scholar] [CrossRef] [PubMed]
- Yao, H.; Zhang, H.; Ma, D.; Zhao, J.; Ding, M. In situ determination of alkali metal density using phase-frequency analysis on atomic magnetometers. Meas. Sci. Technol. 2018, 29, 095005. [Google Scholar] [CrossRef]
- Killian, T.J. Thermionic phenomena caused by vapors of rubidium and potassium. Phys. Rev. 1926, 27, 578. [Google Scholar] [CrossRef]
- Liu, F.; Duan, L.; Fan, W.; Pang, H.; Liu, S.; Quan, W. Suppression of the Bias Error Induced by Vapor Cell Temperature in a Spin-Exchange Relaxation-Free Gyroscope. IEEE Sens. J. 2021, 22, 1990–1997. [Google Scholar] [CrossRef]
- Lu, J.; Wang, J.; Yang, K.; Zhao, J.; Quan, W.; Han, B.; Ding, M. In situ measurement of electrical-heating-induced magnetic field for an atomic magnetometer. Sensors 2020, 20, 1826. [Google Scholar] [CrossRef]
- Zou, S.; Zhang, H.; Chen, X.Y.; Shan, G.C.; Quan, W. Determination of thermal equilibrium in a sealed cell based on optical depth. J. Korean Phys. Soc. 2017, 70, 134–140. [Google Scholar] [CrossRef]
- Brown, J.M. A New Limit on Lorentz-and CPT-Violating Neutron Spin Interactions Using a Potassium-Helium Comagnetometer; Princeton University: Princeton, NJ, USA, 2011. [Google Scholar]
- Huang, J.; Wang, Z.; Fan, W.; Xing, L.; Zhang, W.; Duan, L.; Quan, W. Analysis and suppression of the polarization error for the optical rotation detection system in an atomic comagnetometer. Opt. Express 2020, 28, 35748–35760. [Google Scholar] [CrossRef]
- Liu, S.; Wang, R.; Yuan, L.; Wu, J.; Yuan, Q.; Zhu, J.; Fan, W.; Wang, Z.; Du, P. Transverse light-shift in a spin-exchange relaxation-free co-magnetometer: Measurement, decoupling, and suppression. Opt. Express 2022, 30, 15310–15326. [Google Scholar] [CrossRef]
- Fu, Y.; Wang, Z.; Xing, L.; Fan, W.; Ruan, J.; Pang, H. Suppression of non-uniform magnetic fields in magnetic shielding system for SERF co-magnetometer. IEEE Trans. Instrum. Meas. 2022, 71, 9507008. [Google Scholar] [CrossRef]
- Jackson, J.D. Classical Electrodynamics; John Wiley & Sons: Hoboken, NJ, USA, 2021. [Google Scholar]
- Liu, Y.; Gao, M.; Zeng, X.; Liu, F.; Bi, W. Factors influencing the applications of active heterodyne detection. Opt. Lasers Eng. 2021, 146, 106694. [Google Scholar] [CrossRef]
- Cusato, L.J.; Cerrotta, S.; Torga, J.R.; Morel, E.N. Extending low-coherence interferometry dynamic range using heterodyne detection. Opt. Lasers Eng. 2020, 131, 106106. [Google Scholar] [CrossRef]
- Lee, S.; Lin, J.; Lo, Y.L. Measurements of phase retardation and principal axis angle using an electro-optic modulated Mach–Zehnder interferometer. Opt. Lasers Eng. 2005, 43, 704–720. [Google Scholar] [CrossRef]
- Wang, J.; Sun, C.; Wang, G.; Zou, M.; Tan, T.; Liu, K.; Chen, W.; Gao, X. A fibered near-infrared laser heterodyne radiometer for simultaneous remote sensing of atmospheric CO2 and CH4. Opt. Lasers Eng. 2020, 129, 106083. [Google Scholar] [CrossRef]
- Twu, R.C.; Hsueh, C.W. Phase interrogation birefringent-refraction sensor for refractive index variation measurements. Sens. Actuators Phys. 2017, 253, 85–90. [Google Scholar] [CrossRef]
- Lin, C.Y.; Chi, Y.C.; Tsai, C.T.; Chen, H.Y.; Lin, G.R. Two-color laser diode for 54-Gb/s fiber-wired and 16-Gb/s MMW wireless OFDM transmissions. Photonics Res. 2017, 5, 271–279. [Google Scholar] [CrossRef]
- Dubey, R.; Lahijani, B.V.; Häyrinen, M.; Roussey, M.; Kuittinen, M.; Herzig, H.P. Ultra-thin Bloch-surface-wave-based reflector at telecommunication wavelength. Photonics Res. 2017, 5, 494–499. [Google Scholar] [CrossRef]
- Liang, Y.; Fu, W.; Li, Q.; Chen, X.; Sun, H.; Wang, L.; Jin, L.; Huang, W.; Guan, B.O. Optical-resolution functional gastrointestinal photoacoustic endoscopy based on optical heterodyne detection of ultrasound. Nat. Commun. 2022, 13, 7604. [Google Scholar] [CrossRef]
- Kornack, T.W. A Test of CPT and Lorentz Symmetry Using a Potassium-Helium-3 Co-Magnetometer; Princeton University: Princeton, NJ, USA, 2005. [Google Scholar]
Wavelength | Cell Wall Temperature (K) | Scale Factor | |||||
---|---|---|---|---|---|---|---|
(nm) | 423 | 433 | 443 | 453 | 463 | 473 | (deg/(1019m−3)) |
794.768 | 15.93 | 14.77 | 3.27 | −20.55 | −56.78 | −144.20 | −1.52 |
794.810 | −32.89 | −35.58 | −43.14 | −62.34 | −125.21 | −228.85 | −1.91 |
794.852 | 150.31 | 137.07 | 121.21 | 88.66 | 31.57 | −125.39 | −3.39 |
795.105 | −143.56 | −141.59 | −131.93 | −108.72 | −45.03 | 95.80 | 2.73 |
795.148 | −92.50 | −90.90 | −78.30 | −61.48 | −14.43 | 93.69 | 1.89 |
795.190 | −131.83 | −130.62 | −122.32 | −108.48 | −69.76 | 16.51 | 1.51 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Liu, S.; Wang, Z.; Zhai, Y. In-Situ Detection for Atomic Density in the K-Rb-21Ne Co-Magnetometer via an Optical Heterodyne Interferometry. Photonics 2023, 10, 1091. https://doi.org/10.3390/photonics10101091
Liu S, Wang Z, Zhai Y. In-Situ Detection for Atomic Density in the K-Rb-21Ne Co-Magnetometer via an Optical Heterodyne Interferometry. Photonics. 2023; 10(10):1091. https://doi.org/10.3390/photonics10101091
Chicago/Turabian StyleLiu, Sixun, Zhuo Wang, and Yueyang Zhai. 2023. "In-Situ Detection for Atomic Density in the K-Rb-21Ne Co-Magnetometer via an Optical Heterodyne Interferometry" Photonics 10, no. 10: 1091. https://doi.org/10.3390/photonics10101091
APA StyleLiu, S., Wang, Z., & Zhai, Y. (2023). In-Situ Detection for Atomic Density in the K-Rb-21Ne Co-Magnetometer via an Optical Heterodyne Interferometry. Photonics, 10(10), 1091. https://doi.org/10.3390/photonics10101091