Grant Report on the Transcranial near Infrared Radiation and Cerebral Blood Flow in Depression (TRIADE) Study
Abstract
:1. Significance
The Unmet Need
2. Transcranial Photobiomodulation
3. tPBM Penetration in the Brain
4. Cellular Mechanisms of tBPM
5. Mechanisms of Action of tPBM in MDD
6. Effects of tPBM on Cerebral Blood Flow
7. Clinical Effects of tPBM on MDD
8. Safety and Tolerability of tPBM
9. Preliminary Data on the Effect of tPBM on CBF (Measured with fMRI-BOLD)
10. Innovation
11. Approach
12. Specific Aims (SA)
12.1. Aim 1 (R61): To Demonstrate Target Engagement by tPBM in MDD
12.2. Aim 2 (R33): To Confirm Target Engagement at the tPBM Irradiance Dose Identified in R61 and Determine the Relationship between Changes in Target Biomarker and Clinical Symptoms
Aim 3 (R33): To Collect Information about the Antidepressant Effect of tPBM in MDD
13. R61 Phase
13.1. Study Schedule
13.2. Device
13.3. Imaging Procedures
13.4. Imaging Preprocessing
14. R33 Phase
14.1. Study Schedule
14.2. Imaging
15. Data Management
16. Data Analysis and Power Assumptions
16.1. SA1 (R61): To Demonstrate Target Engagement by tPBM in MDD
16.2. SA2 (R33): To Confirm Target Engagement at the tPBM Irradiance Dose Identified in R61 and Determine the Relationship between Changes in Target Biomarker and Clinical Symptoms
16.3. SA3 (R33): To Collect Information about the Antidepressant Effect of tPBM in MDD
17. Discussion
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Kessler, R.C.; Berglund, P.; Demler, O.; Jin, R.; Koretz, D.; Merikangas, K.R.; Rush, A.J.; Walters, E.E.; Wang, P.S. The Epidemiology of Major Depressive Disorder. JAMA 2003, 289, 3095. [Google Scholar] [CrossRef] [PubMed]
- Ferrari, A.J.; Charlson, F.J.; Norman, R.E.; Patten, S.B.; Freedman, G.; Murray, C.J.L.; Vos, T.; Whiteford, H.A. Burden of Depressive Disorders by Country, Sex, Age, and Year: Findings from the Global Burden of Disease Study 2010. PLoS Med. 2013, 10, e1001547. [Google Scholar] [CrossRef] [Green Version]
- Cassano, P.; Fava, M. Tolerability Issues during Long-Term Treatment with Antidepressants. Ann. Clin. Psychiatry 2004, 16, 15–25. [Google Scholar] [CrossRef]
- Kennedy, S.H.; Lam, R.W.; McIntyre, R.S.; Tourjman, S.V.; Bhat, V.; Blier, P.; Hasnain, M.; Jollant, F.; Levitt, A.J.; MacQueen, G.M.; et al. Canadian Network for Mood and Anxiety Treatments (CANMAT) 2016 Clinical Guidelines for the Management of Adults with Major Depressive Disorder. Can. J. Psychiatry 2016, 61, 540–560. [Google Scholar] [CrossRef] [PubMed]
- Rush, A.J.; Warden, D.; Wisniewski, S.R.; Fava, M.; Trivedi, M.H.; Gaynes, B.N. STAR*D: Revising Conventional Wisdom. CNS Drugs 2009, 23, 627–647. [Google Scholar] [PubMed]
- Sinyor, M.; Schaffer, A.; Levitt, A. The Sequenced Treatment Alternatives to Relieve Depression (STAR*D) Trial: A Review. Can. J. Psychiatry 2010, 55, 126–135. [Google Scholar] [CrossRef] [Green Version]
- Milev, R.V.; Giacobbe, P.; Kennedy, S.H.; Blumberger, D.M.; Daskalakis, Z.J.; Downar, J.; Modirrousta, M.; Patry, S.; Vila-Rodriguez, F.; Lam, R.W.; et al. Canadian Network for Mood and Anxiety Treatments (CANMAT) 2016 Clinical Guidelines for the Management of Adults with Major Depressive Disorder. Can. J. Psychiatry 2016, 61, 561–575. [Google Scholar] [CrossRef]
- Hamblin, M.R. Shining Light on the Head: Photobiomodulation for Brain Disorders. BBA Clin. 2016, 6, 113–124. [Google Scholar] [CrossRef] [Green Version]
- Cassano, P.; Norton, R.; Caldieraro, M.A.; Vahedifard, F.; Vizcaino, F.; McEachern, K.M.; Iosifescu, D. Tolerability and Safety of Transcranial Photobiomodulation for Mood and Anxiety Disorders. Photonics 2022, 9, 507. [Google Scholar] [CrossRef]
- Yue, L.; Humayun, M.S. Monte Carlo Analysis of the Enhanced Transcranial Penetration Using Distributed Near-Infrared Emitter Array. J. Biomed. Opt. 2015, 20, 088001. [Google Scholar] [CrossRef]
- Yuan, Y.; Cassano, P.; Pias, M.; Fang, Q. Transcranial Photobiomodulation with Near-Infrared Light from Childhood to Elderliness: Simulation of Dosimetry. Neurophoton 2020, 7, 015009. [Google Scholar] [CrossRef] [Green Version]
- Cassano, P.; Tran, A.P.; Katnani, H.; Bleier, B.S.; Hamblin, M.R.; Yuan, Y.; Fang, Q. Selective Photobiomodulation for Emotion Regulation: Model-Based Dosimetry Study. Neurophotonics 2019, 6, 015004. [Google Scholar] [CrossRef]
- Jagdeo, J.R.; Adams, L.E.; Brody, N.I.; Siegel, D.M. Transcranial Red and Near Infrared Light Transmission in a Cadaveric Model. PLoS ONE 2012, 7, e47460. [Google Scholar] [CrossRef] [PubMed]
- Tedford, C.E.; DeLapp, S.; Jacques, S.; Anders, J. Quantitative Analysis of Transcranial and Intraparenchymal Light Penetration in Human Cadaver Brain Tissue. Lasers Surg. Med. 2015, 47, 312–322. [Google Scholar] [CrossRef] [PubMed]
- Henderson, T.A.; Morries, L. Near-Infrared Photonic Energy Penetration: Can Infrared Phototherapy Effectively Reach the Human Brain? Neuropsychiatr. Dis. Treat 2015, 11, 2191. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hashmi, J.T.; Huang, Y.-Y.; Sharma, S.K.; Kurup, D.B.; de Taboada, L.; Carroll, J.D.; Hamblin, M.R. Effect of Pulsing in Low-Level Light Therapy. Lasers Surg. Med. 2010, 42, 450–466. [Google Scholar] [CrossRef] [Green Version]
- Chung, H.; Dai, T.; Sharma, S.K.; Huang, Y.-Y.; Carroll, J.D.; Hamblin, M.R. The Nuts and Bolts of Low-Level Laser (Light) Therapy. Ann. Biomed. Eng. 2012, 40, 516–533. [Google Scholar] [CrossRef] [Green Version]
- Dmochowski, G.; Dmochowski, J. Increased Blood Flow and Oxidative Metabolism in the Human Brain by Transcranial Laser Stimulation. bioRxiv 2018. [Google Scholar] [CrossRef]
- Mochizuki-Oda, N.; Kataoka, Y.; Cui, Y.; Yamada, H.; Heya, M.; Awazu, K. Effects of Near-Infra-Red Laser Irradiation on Adenosine Triphosphate and Adenosine Diphosphate Contents of Rat Brain Tissue. Neurosci. Lett. 2002, 323, 207–210. [Google Scholar] [CrossRef]
- Karu, T.I.; Kolyakov, S.F. Exact Action Spectra for Cellular Responses Relevant to Phototherapy. Photomed. Laser Surg. 2005, 23, 355–361. [Google Scholar] [CrossRef]
- Oron, U.; Ilic, S.; de Taboada, L.; Streeter, J. Ga-As (808 Nm) Laser Irradiation Enhances ATP Production in Human Neuronal Cells in Culture. Photomed. Laser Surg. 2007, 25, 180–182. [Google Scholar] [CrossRef] [PubMed]
- Yu, W.; Naim, J.O.; McGowan, M.; Ippolito, K.; Lanzafame, R.J. Photomodulation of Oxidative Metabolism and Electron Chain Enzymes in Rat Liver Mitochondria. Photochem. Photobiol. 1997, 66, 866–871. [Google Scholar] [CrossRef] [PubMed]
- Drevets, W. Functional Anatomical Correlates of Antidepressant Drug Treatment Assessed Using PET Measures of Regional Glucose Metabolism. Eur. Neuropsychopharmacol. 2002, 12, 527–544. [Google Scholar] [CrossRef] [PubMed]
- Kennedy, S.H.; Konarski, J.Z.; Segal, Z.V.; Lau, M.A.; Bieling, P.J.; McIntyre, R.S.; Mayberg, H.S. Differences in Brain Glucose Metabolism between Responders to CBt and Venlafaxine in a 16-Week Randomized Controlled Trial. Am. J. Psychiatry 2007, 164, 778–788. [Google Scholar] [CrossRef]
- Mayberg, H.S.; Brannan, S.K.; Tekell, J.L.; Silva, J.A.; Mahurin, R.K.; McGinnis, S.; Jerabek, P.A. Regional Metabolic Effects of Fluoxetine in Major Depression: Serial Changes and Relationship to Clinical Response. Biol. Psychiatry 2000, 48, 830–843. [Google Scholar] [CrossRef] [PubMed]
- Videbech, P. PET Measurements of Brain Glucose Metabolism and Blood Flow in Major Depressive Disorder: A Critical Review. Acta Psychiatr. Scand 2000, 101, 11–20. [Google Scholar] [CrossRef]
- Bansal, Y.; Kuhad, A. Mitochondrial Dysfunction in Depression. Curr. Neuropharmacol. 2016, 14, 610–618. [Google Scholar] [CrossRef] [Green Version]
- Hroudová, J.; Fišar, Z.; Kitzlerová, E.; Zvěřová, M.; Raboch, J. Mitochondrial Respiration in Blood Platelets of Depressive Patients. Mitochondrion 2013, 13, 795–800. [Google Scholar] [CrossRef]
- Karabatsiakis, A.; Böck, C.; Salinas-Manrique, J.; Kolassa, S.; Calzia, E.; Dietrich, D.E.; Kolassa, I.-T. Mitochondrial Respiration in Peripheral Blood Mononuclear Cells Correlates with Depressive Subsymptoms and Severity of Major Depression. Transl. Psychiatry 2014, 4, e397. [Google Scholar] [CrossRef] [Green Version]
- Morava, É.; Kozicz, T. Mitochondria and the Economy of Stress (Mal)Adaptation. Neurosci. Biobehav. Rev. 2013, 37, 668–680. [Google Scholar] [CrossRef]
- Iosifescu, D.V.; Bolo, N.R.; Nierenberg, A.A.; Jensen, J.E.; Fava, M.; Renshaw, P.F. Brain Bioenergetics and Response to Triiodothyronine Augmentation in Major Depressive Disorder. Biol. Psychiatry 2008, 63, 1127–1134. [Google Scholar] [CrossRef] [PubMed]
- de Freitas, L.F.; Hamblin, M.R. Proposed Mechanisms of Photobiomodulation or Low-Level Light Therapy. IEEE J. Sel. Top. Quantum Electron. 2016, 22, 348–364. [Google Scholar] [CrossRef] [Green Version]
- Greco, M.; Guida, G.; Perlino, E.; Marra, E.; Quagliariello, E. Increase in RNA and Protein Synthesis by Mitochondria Irradiated with Helium-Neon Laser. Biochem. Biophys. Res. Commun. 1989, 163, 1428–1434. [Google Scholar] [CrossRef] [PubMed]
- Eren, İ.; Nazıroğlu, M.; Demirdaş, A. Protective Effects of Lamotrigine, Aripiprazole and Escitalopram on Depression-Induced Oxidative Stress in Rat Brain. Neurochem. Res. 2007, 32, 1188–1195. [Google Scholar] [CrossRef] [PubMed]
- Ozcan, M.; Gulec, M.; Ozerol, E.; Polat, R.; Akyol, O. Antioxidant Enzyme Activities and Oxidative Stress in Affective Disorders. Int. Clin. Pharmacol. Clin. Exp. 2007, 22, 67–73. [Google Scholar] [CrossRef]
- Sarandol, A.; Sarandol, E.; Eker, S.S.; Erdinc, S.; Vatansever, E.; Kirli, S. Major Depressive Disorder Is Accompanied with Oxidative Stress: Short-Term Antidepressant Treatment Does Not Alter Oxidative–Antioxidative Systems. Hum. Psychopharmacol. Clin. Exp. 2007, 22, 67–73. [Google Scholar] [CrossRef]
- Shungu, D.C.; Weiduschat, N.; Murrough, J.W.; Mao, X.; Pillemer, S.; Dyke, J.P.; Medow, M.S.; Natelson, B.H.; Stewart, J.M.; Mathew, S.J. Increased Ventricular Lactate in Chronic Fatigue Syndrome. III. Relationships to Cortical Glutathione and Clinical Symptoms Implicate Oxidative Stress in Disorder Pathophysiology. NMR Biomed. 2012, 25, 1073–1087. [Google Scholar] [CrossRef] [Green Version]
- Spanemberg, L.; Caldieraro, M.; Arrua Vares, E.; Wollenhaupt de Aguiar, B.; Yuri Kawamoto, S.; Parker, G.; Pio Fleck, M.; Kauer-SantAnna, M.; Galvao, E. Biological Differences between Melancholic and Nonmelancholic Depression Subtyped by the CORE Measure. Neuropsychiatr. Dis. Treat 2014, 10, 1523. [Google Scholar] [CrossRef] [Green Version]
- Dowlati, Y.; Herrmann, N.; Swardfager, W.; Liu, H.; Sham, L.; Reim, E.K.; Lanctôt, K.L. A Meta-Analysis of Cytokines in Major Depression. Biol. Psychiatry 2010, 67, 446–457. [Google Scholar] [CrossRef]
- Köhler, C.A.; Freitas, T.H.; Maes, M.; de Andrade, N.Q.; Liu, C.S.; Fernandes, B.S.; Stubbs, B.; Solmi, M.; Veronese, N.; Herrmann, N.; et al. Peripheral Cytokine and Chemokine Alterations in Depression: A Meta-Analysis of 82 Studies. Acta Psychiatr. Scand 2017, 135, 373–387. [Google Scholar] [CrossRef]
- Liu, Y.; Ho, R.C.-M.; Mak, A. Interleukin (IL)-6, Tumour Necrosis Factor Alpha (TNF-α) and Soluble Interleukin-2 Receptors (SIL-2R) Are Elevated in Patients with Major Depressive Disorder: A Meta-Analysis and Meta-Regression. J. Affect. Disord 2012, 139, 230–239. [Google Scholar] [CrossRef] [PubMed]
- Yoshimura, R.; Hori, H.; Ikenouchi-Sugita, A.; Umene-Nakano, W.; Ueda, N.; Nakamura, J. Higher Plasma Interleukin-6 (IL-6) Level Is Associated with SSRI- or SNRI-Refractory Depression. Prog. Neuropsychopharmacol. Biol. Psychiatry 2009, 33, 722–726. [Google Scholar] [CrossRef]
- Lindqvist, D.; Janelidze, S.; Hagell, P.; Erhardt, S.; Samuelsson, M.; Minthon, L.; Hansson, O.; Björkqvist, M.; Träskman-Bendz, L.; Brundin, L. Interleukin-6 Is Elevated in the Cerebrospinal Fluid of Suicide Attempters and Related to Symptom Severity. Biol. Psychiatry 2009, 66, 287–292. [Google Scholar] [CrossRef] [PubMed]
- Autry, A.E.; Monteggia, L.M. Brain-Derived Neurotrophic Factor and Neuropsychiatric Disorders. Pharmacol. Rev. 2012, 64, 238–258. [Google Scholar] [CrossRef] [Green Version]
- Duman, R. Pathophysiology of Depression and Innovative Treatments: Remodeling Glutamatergic Synaptic Connections. Dialogues Clin. Neurosci. 2014, 16, 11–27. [Google Scholar] [CrossRef]
- Molendijk, M.L.; Spinhoven, P.; Polak, M.; Bus, B.A.A.; Penninx, B.W.J.H.; Elzinga, B.M. Serum BDNF Concentrations as Peripheral Manifestations of Depression: Evidence from a Systematic Review and Meta-Analyses on 179 Associations (N = 9484). Mol. Psychiatry 2014, 19, 791–800. [Google Scholar] [CrossRef] [PubMed]
- Rizzi, C.F.; Mauriz, J.L.; Freitas Corrêa, D.S.; Moreira, A.J.; Zettler, C.G.; Filippin, L.I.; Marroni, N.P.; González-Gallego, J. Effects of Low-Level Laser Therapy (LLLT) on the Nuclear Factor (NF)-ΚB Signaling Pathway in Traumatized Muscle. Lasers Surg. Med. 2006, 38, 704–713. [Google Scholar] [CrossRef]
- Chludzińska, L.; Ananicz, E.; Jarosawska, A.; Komorowska, M. Near-Infrared Radiation Protects the Red Cell Membrane against Oxidation. Blood Cells Mol. Dis. 2005, 35, 74–79. [Google Scholar] [CrossRef]
- Araki, H.; Imaoka, A.; Kuboyama, N.; Abiko, Y. Reduction of Interleukin-6 Expression in Human Synoviocytes and Rheumatoid Arthritis Rat Joints by Linear Polarized Near Infrared Light (SuperLizer) Irradiation. Laser Ther. 2011, 20, 293–300. [Google Scholar] [CrossRef] [Green Version]
- Yamaura, M.; Yao, M.; Yaroslavsky, I.; Cohen, R.; Smotrich, M.; Kochevar, I.E. Low Level Light Effects on Inflammatory Cytokine Production by Rheumatoid Arthritis Synoviocytes. Lasers Surg. Med. 2009, 41, 282–290. [Google Scholar] [CrossRef]
- Anders, J. The Potential of Light Therapy for Central Nervous System Injury and Disease. Photomed. Laser Surg. 2009, 27, 379–380. [Google Scholar] [CrossRef] [Green Version]
- Giuliani, A.; Lorenzini, L.; Gallamini, M.; Massella, A.; Giardino, L.; Calzà, L. Low Infra Red Laser Light Irradiation on Cultured Neural Cells: Effects on Mitochondria and Cell Viability after Oxidative Stress. BMC Complement. Altern. Med. 2009, 9, 8. [Google Scholar] [CrossRef] [Green Version]
- Rojas, J.C.; Lee, J.; John, J.M.; Gonzalez-Lima, F. Neuroprotective Effects of Near-Infrared Light in an In Vivo Model of Mitochondrial Optic Neuropathy. J. Neurosci. 2008, 28, 13511–13521. [Google Scholar] [CrossRef] [Green Version]
- Wong-Riley, M.T.T.; Liang, H.L.; Eells, J.T.; Chance, B.; Henry, M.M.; Buchmann, E.; Kane, M.; Whelan, H.T. Photobiomodulation Directly Benefits Primary Neurons Functionally Inactivated by Toxins. J. Biol. Chem. 2005, 280, 4761–4771. [Google Scholar] [CrossRef] [Green Version]
- Ando, T.; Xuan, W.; Xu, T.; Dai, T.; Sharma, S.K.; Kharkwal, G.B.; Huang, Y.-Y.; Wu, Q.; Whalen, M.J.; Sato, S.; et al. Comparison of Therapeutic Effects between Pulsed and Continuous Wave 810-Nm Wavelength Laser Irradiation for Traumatic Brain Injury in Mice. PLoS ONE 2011, 6, e26212. [Google Scholar] [CrossRef] [Green Version]
- Oron, A.; Oron, U.; Streeter, J.; de Taboada, L.; Alexandrovich, A.; Trembovler, V.; Shohami, E. Low-Level Laser Therapy Applied Transcranially to Mice Following Traumatic Brain Injury Significantly Reduces Long-Term Neurological Deficits. J Neurotrauma 2007, 24, 651–656. [Google Scholar] [CrossRef]
- Wu, Q.; Xuan, W.; Ando, T.; Xu, T.; Huang, L.; Huang, Y.-Y.; Dai, T.; Dhital, S.; Sharma, S.K.; Whalen, M.J.; et al. Low-Level Laser Therapy for Closed-Head Traumatic Brain Injury in Mice: Effect of Different Wavelengths. Lasers Surg. Med. 2012, 44, 218–226. [Google Scholar] [CrossRef] [Green Version]
- Xuan, W.; Vatansever, F.; Huang, L.; Wu, Q.; Xuan, Y.; Dai, T.; Ando, T.; Xu, T.; Huang, Y.-Y.; Hamblin, M.R. Transcranial Low-Level Laser Therapy Improves Neurological Performance in Traumatic Brain Injury in Mice: Effect of Treatment Repetition Regimen. PLoS ONE 2013, 8, e53454. [Google Scholar] [CrossRef] [Green Version]
- Xuan, W.; Agrawal, T.; Huang, L.; Gupta, G.K.; Hamblin, M.R. Low-Level Laser Therapy for Traumatic Brain Injury in Mice Increases Brain Derived Neurotrophic Factor (BDNF) and Synaptogenesis. J. Biophotonics 2015, 8, 502–511. [Google Scholar] [CrossRef]
- Mohammed, H.S. Transcranial Low-Level Infrared Laser Irradiation Ameliorates Depression Induced by Reserpine in Rats. Lasers Med. Sci. 2016, 31, 1651–1656. [Google Scholar] [CrossRef]
- Xu, Z.; Guo, X.; Yang, Y.; Tucker, D.; Lu, Y.; Xin, N.; Zhang, G.; Yang, L.; Li, J.; Du, X.; et al. Low-Level Laser Irradiation Improves Depression-Like Behaviors in Mice. Mol. Neurobiol. 2017, 54, 4551–4559. [Google Scholar] [CrossRef]
- Tanaka, Y.; Akiyoshi, J.; Kawahara, Y.; Ishitobi, Y.; Hatano, K.; Hoaki, N.; Mori, A.; Goto, S.; Tsuru, J.; Matsushita, H.; et al. Infrared Radiation Has Potential Antidepressant and Anxiolytic Effects in Animal Model of Depression and Anxiety. Brain Stimul. 2011, 4, 71–76. [Google Scholar] [CrossRef]
- Salehpour, F.; Rasta, S.H.; Mohaddes, G.; Sadigh-Eteghad, S.; Salarirad, S. Therapeutic Effects of 10-HzPulsed Wave Lasers in Rat Depression Model: A Comparison between near-Infrared and Red Wavelengths. Lasers Surg. Med. 2016, 48, 695–705. [Google Scholar] [CrossRef]
- Wu, X.; Alberico, S.L.; Moges, H.; de Taboada, L.; Tedford, C.E.; Anders, J.J. Pulsed Light Irradiation Improves Behavioral Outcome in a Rat Model of Chronic Mild Stress. Lasers Surg. Med. 2012, 44, 227–232. [Google Scholar] [CrossRef]
- Koenigs, M.; Grafman, J. The Functional Neuroanatomy of Depression: Distinct Roles for Ventromedial and Dorsolateral Prefrontal Cortex. Behav. Brain Res. 2009, 201, 239–243. [Google Scholar] [CrossRef] [Green Version]
- Schiffer, F.; Johnston, A.L.; Ravichandran, C.; Polcari, A.; Teicher, M.H.; Webb, R.H.; Hamblin, M.R. Psychological Benefits 2 and 4 Weeks after a Single Treatment with near Infrared Light to the Forehead: A Pilot Study of 10 Patients with Major Depression and Anxiety. Behav. Brain Funct. 2009, 5, 46. [Google Scholar] [CrossRef] [Green Version]
- Cassano, P.; Cusin, C.; Mischoulon, D.; Hamblin, M.R.; de Taboada, L.; Pisoni, A.; Chang, T.; Yeung, A.; Ionescu, D.F.; Petrie, S.R.; et al. Near-Infrared Transcranial Radiation for Major Depressive Disorder: Proof of Concept Study. Psychiatry J. 2015, 2015, 352979. [Google Scholar] [CrossRef] [Green Version]
- Cassano, P.; Petrie, S.R.; Mischoulon, D.; Cusin, C.; Katnani, H.; Yeung, A.; de Taboada, L.; Archibald, A.; Bui, E.; Baer, L.; et al. Transcranial Photobiomodulation for the Treatment of Major Depressive Disorder. The ELATED-2 Pilot Trial. Photomed. Laser Surg. 2018, 36, 634–646. [Google Scholar] [CrossRef] [Green Version]
- Disner, S.G.; Beevers, C.G.; Gonzalez-Lima, F. Transcranial Laser Stimulation as Neuroenhancement for Attention Bias Modification in Adults with Elevated Depression Symptoms. Brain Stimul. 2016, 9, 780–787. [Google Scholar] [CrossRef] [Green Version]
- Caldieraro, M.A.; Sani, G.; Bui, E.; Cassano, P. Long-Term Near-Infrared Photobiomodulation for Anxious Depression Complicated by Takotsubo Cardiomyopathy. J. Clin. Psychopharmacol. 2018, 38, 268–270. [Google Scholar] [CrossRef]
- Rojas, J.C.; Bruchey, A.K.; Gonzalez-Lima, F. Low-Level Light Therapy Improves Cortical Metabolic Capacity and Memory Retention. J. Alzheimer’s Dis. 2012, 32, 741–752. [Google Scholar] [CrossRef]
- Uozumi, Y.; Nawashiro, H.; Sato, S.; Kawauchi, S.; Shima, K.; Kikuchi, M. Targeted Increase in Cerebral Blood Flow by Transcranial Near-Infrared Laser Irradiation. Lasers Surg. Med. 2010, 42, 566–576. [Google Scholar] [CrossRef] [PubMed]
- Tian, F.; Hase, S.N.; Gonzalez-Lima, F.; Liu, H. Transcranial Laser Stimulation Improves Human Cerebral Oxygenation. Lasers Surg. Med. 2016, 48, 343–349. [Google Scholar] [CrossRef] [Green Version]
- Salgado, A.S.I.; Zângaro, R.A.; Parreira, R.B.; Kerppers, I.I. The Effects of Transcranial LED Therapy (TCLT) on Cerebral Blood Flow in the Elderly Women. Lasers Med. Sci. 2015, 30, 339–346. [Google Scholar] [CrossRef]
- Hipskind, S.G.; Grover, F.L.; Fort, T.R.; Helffenstein, D.; Burke, T.J.; Quint, S.A.; Bussiere, G.; Stone, M.; Hurtado, T. Pulsed Transcranial Red/Near-Infrared Light Therapy Using Light-Emitting Diodes Improves Cerebral Blood Flow and Cognitive Function in Veterans with Chronic Traumatic Brain Injury: A Case Series. Photomed. Laser Surg. 2018. [Google Scholar] [CrossRef] [Green Version]
- Ho, M.D.; Martin, P.; Yee, M.; Koo, B.; Baker, E.; Hamblin, M.R.; Naeser, M. Increaed Functional Connectivity in Default Mode Network Associated with Application of Transcranial, Light-Emitting Diodes to Treat Chronic Aphasia: Case Series. J. Int. Neuropsychiatry 2016, 22, 229. [Google Scholar]
- Konstantinović, L.M.; Jelić, M.B.; Jeremić, A.; Stevanović, V.B.; Milanović, S.D.; Filipović, S.R. Transcranial Application of Near-Infrared Low-Level Laser Can Modulate Cortical Excitability. Lasers Surg. Med. 2013, 45, 648–653. [Google Scholar] [CrossRef]
- Chaieb, L.; Antal, A.; Masurat, F.; Paulus, W. Neuroplastic Effects of Transcranial Near-Infrared Stimulation (TNIRS) on the Motor Cortex. Front. Behav. Neurosci. 2015, 9, 147. [Google Scholar] [CrossRef] [Green Version]
- Song, P.; Han, T.; Lin, H.; Li, S.; Huang, Q.; Dai, X.; Wang, R.; Wang, Y. Transcranial Near-Infrared Stimulation May Increase Cortical Excitability Recorded in Humans. Brain Res. Bull. 2020, 155, 155–158. [Google Scholar] [CrossRef]
- Iosifescu, D.V.; Norton, R.J.; Tural, U.; Mischoulon, D.; Collins, K.; McDonald, E.; De Taboada, L.; Foster, S.; Cusin, C.; Yeung, A.; et al. Very Low-Level Transcranial Photobiomodulation for Major Depressive Disorder: The ELATED-3 Multicenter, Randomized, Sham-Controlled Trial. J. Clin. Psychiatry 2022, 83, 21m14226. [Google Scholar] [CrossRef]
- Hacke, W.; Schellinger, P.D.; Albers, G.W.; Bornstein, N.M.; Dahlof, B.L.; Fulton, R.; Kasner, S.E.; Shuaib, A.; Richieri, S.P.; Dilly, S.G.; et al. Transcranial Laser Therapy in Acute Stroke Treatment. Stroke 2014, 45, 3187–3193. [Google Scholar] [CrossRef] [PubMed]
- Lampl, Y.; Zivin, J.A.; Fisher, M.; Lew, R.; Welin, L.; Dahlof, B.; Borenstein, P.; Andersson, B.; Perez, J.; Caparo, C.; et al. Infrared Laser Therapy for Ischemic Stroke: A New Treatment Strategy. Stroke 2007, 38, 1843–1849. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Huisa, B.N.; Stemer, A.B.; Walker, M.G.; Rapp, K.; Meyer, B.C.; Zivin, J.A. Transcranial Laser Therapy for Acute Ischemic Stroke: A Pooled Analysis of NEST-1 and NEST-2. Int. J. Stroke 2013, 8, 315–320. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Caldieraro, M.A.; Cassano, P. Transcranial and Systemic Photobiomodulation for Major Depressive Disorder: A Systematic Review of Efficacy, Tolerability and Biological Mechanisms. J. Affect. Disord. 2019, 243, 262–273. [Google Scholar] [CrossRef]
- Henderson, T.A.; Morries, L.; Cassano, P. Treatments for Traumatic Brain Injury with Emphasis on Transcranial Near-Infrared Laser Phototherapy. Neuropsychiatr. Dis. Treat 2015, 11, 2159. [Google Scholar] [CrossRef] [Green Version]
- Posse, S.; Wiese, S.; Gembris, D.; Mathiak, K.; Kessler, C.; Grosse-Ruyken, M.-L.; Elghahwagi, B.; Richards, T.; Dager, S.R.; Kiselev, V.G. Enhancement of BOLD-Contrast Sensitivity by Single-Shot Multi-Echo Functional MR Imaging. Magn. Reson. Med. 1999, 42, 87–97. [Google Scholar] [CrossRef]
- Chow, G.C. Tests of Equality Between Sets of Coefficients in Two Linear Regressions. Econometrica 1960, 28, 591. [Google Scholar] [CrossRef] [Green Version]
- Bottomley, P.A. Spatial Localization in NMR Spectroscopy in Vivo. Ann. N. Y. Acad. Sci. 1987, 508, 333–348. [Google Scholar] [CrossRef]
- Cox, R.W. AFNI: Software for Analysis and Visualization of Functional Magnetic Resonance Neuroimages. Comput. Biomed. Res. 1996, 29, 162–173. [Google Scholar] [CrossRef]
- Diggle, P.; Heagerty, P.; Liang, K.-Y.; Zeger, S. Analysis of Longitudinal Data; Oxford University Press: New York, NY, USA, 2005. [Google Scholar]
Study Phase | Screen (R61 & R33) | R61: t-PBM/sham + fMRI | R61: Follow-Up | R33: Baseline | R33: Treatment | R33: Primary Outcome | R33: Final Visit or ET | Event Based |
---|---|---|---|---|---|---|---|---|
Week | −2 | 1–4 | 5 | 1 | 1–8 | 8 | 9 | |
Visit # | 1 | 2–5 | 6 | 2 | 3–15 | 16 | 17 | |
Consent | X | |||||||
AE Form | X | X | X | X | X | X | X | |
ASQ | X | X | X | X | X | X | ||
ATRQ | X | |||||||
CGI-I/S | X | X | X | X | X | X | ||
Concomitant Meds | X | X | X | X | X | X | X | X |
C-SSRS | X | X | X | X | X | X | X | X |
Demographic data | X | |||||||
fMRI + t-PBM/sham | X | X | X | |||||
IDS-C | X | |||||||
Inclusion/exclusion | X | |||||||
MADRS | X | X | X | X | X | X | ||
Medical history, Physical exam | X | |||||||
MINI | X | |||||||
MoCA | X | |||||||
MRI Safety Checklist | X | X | X | X | ||||
Neuro-QoL | X | X | X | X | X | X | ||
NIS-SCS | X | |||||||
PANAS | X | X | ||||||
PBQ | X | X | X | |||||
PCQ | X | X | X | X | X | X | ||
Pregnancy test | X | |||||||
QLESQ | X | X | X | X | X | X | ||
Safety labs | X | |||||||
SAFTEE-SI | X | X | X | X | X | X | X | |
SDQ | X | X | X | X | X | X | ||
t-PBM/sham | X (2/WEEK) | |||||||
TSRQ | X | X | X | X | ||||
Urine drug screen | X | |||||||
Vital signs | X | X | X | X | X | X | X |
Parameters | Dose | |||
---|---|---|---|---|
High | Middle | Low | Sham | |
Irradiance (mW/cm2) | ~300 | ~300 | ~50 | 0 |
Exposure time (s) | 600 | 333 | 1200 | 0 |
Average Fluence (J/cm2) | ~180 | ~100 | ~60 | 0 |
Total energy (kJ) | ~4.3 | ~2.4 | ~1.4 | 0 |
Wave Mode | Pulsed | Continuous | Continuous | N/A |
Duty Cycle (%) | 33 | N/A | N/A | N/A |
Pulse Rate (Hz) | ~40 | N/A | N/A | N/A |
NIR source | Laser | Laser | Laser | N/A |
Wavelength | 808 nm | 808 nm | 808 nm | N/A |
Area of exposure | 24 cm2 | 24 cm2 | 24 cm2 | N/A |
Anatomical targets | F4, F3 | F4, F3 | F4, F3 | F4, F3 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Iosifescu, D.V.; Collins, K.A.; Hurtado-Puerto, A.; Irvin, M.K.; Clancy, J.A.; Sparpana, A.M.; Sullivan, E.F.; Parincu, Z.; Ratai, E.-M.; Funes, C.J.; et al. Grant Report on the Transcranial near Infrared Radiation and Cerebral Blood Flow in Depression (TRIADE) Study. Photonics 2023, 10, 90. https://doi.org/10.3390/photonics10010090
Iosifescu DV, Collins KA, Hurtado-Puerto A, Irvin MK, Clancy JA, Sparpana AM, Sullivan EF, Parincu Z, Ratai E-M, Funes CJ, et al. Grant Report on the Transcranial near Infrared Radiation and Cerebral Blood Flow in Depression (TRIADE) Study. Photonics. 2023; 10(1):90. https://doi.org/10.3390/photonics10010090
Chicago/Turabian StyleIosifescu, Dan V., Katherine A. Collins, Aura Hurtado-Puerto, Molly K. Irvin, Julie A. Clancy, Allison M. Sparpana, Elizabeth F. Sullivan, Zamfira Parincu, Eva-Maria Ratai, Christopher J. Funes, and et al. 2023. "Grant Report on the Transcranial near Infrared Radiation and Cerebral Blood Flow in Depression (TRIADE) Study" Photonics 10, no. 1: 90. https://doi.org/10.3390/photonics10010090
APA StyleIosifescu, D. V., Collins, K. A., Hurtado-Puerto, A., Irvin, M. K., Clancy, J. A., Sparpana, A. M., Sullivan, E. F., Parincu, Z., Ratai, E. -M., Funes, C. J., Weerasekera, A., Dmochowski, J. P., & Cassano, P. (2023). Grant Report on the Transcranial near Infrared Radiation and Cerebral Blood Flow in Depression (TRIADE) Study. Photonics, 10(1), 90. https://doi.org/10.3390/photonics10010090