Ultra-Broadband NPE-Based Femtosecond Fiber Laser
Abstract
1. Introduction
2. Experimental Scheme and Results
3. Numerical Model
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Fermann, M.E.; Hartl, I. Ultrafast fibre lasers. Nat. Photon. 2013, 7, 868–874. [Google Scholar] [CrossRef]
- Hoover, E.E.; Squier, J.A. Advances in multiphoton microscopy technology. Nat. Photon. 2013, 7, 93–101. [Google Scholar] [CrossRef] [PubMed]
- Gao, B.; Zhang, R.H.; Huo, J.Y.; Ma, C.Y.; Han, Y.; Hou, Q.R.; Deng, F.; Wu, G.; Ge, Y.Q. Generation and categories of solitons in various mode-locked fiber lasers. Optik 2020, 220, 165168. [Google Scholar] [CrossRef]
- Lefrançois, S.; Kieu, K.; Deng, Y.; Kafka, J.D.; Wise, F.W. Scaling of dissipative soliton fiber lasers to megawatt peak powers by use of large-area photonic crystal fiber. Opt. Lett. 2010, 35, 1569–1571. [Google Scholar] [CrossRef]
- Baumgartl, M.; Jansen, F.; Stutzki, F.; Jauregui, C.; Ortaç, B.; Limpert, J.; Tünnermann, A. High average and peak power femtosecond large-pitch photonic-crystal-fiber laser. Opt. Lett. 2011, 36, 244. [Google Scholar] [CrossRef]
- Jauregui, C.; Limpert, J.; Tünnermann, A. High-power fibre lasers. Nat. Photon. 2013, 7, 861–867. [Google Scholar] [CrossRef]
- Liu, Z.; Ziegler, Z.M.; Wright, L.G.; Wise, F.W. Megawatt peak power from a Mamyshev oscillator. Optica 2017, 4, 649. Available online: http://xxx.lanl.gov/abs/1703.09166 (accessed on 5 December 2022). [CrossRef]
- Haig, H.; Sidorenko, P.; Thorne, R.; Wise, F. Megawatt pulses from an all-fiber and self-starting femtosecond oscillator. Opt. Lett. 2022, 47, 762. [Google Scholar] [CrossRef]
- Chong, A.; Buckley, J.R.; Renninger, W.H.; Wise, F.W. All-normal-dispersion femtosecond fiber laser. Opt. Express 2006, 14, 10095–10100. [Google Scholar] [CrossRef]
- Lefrançois, S.; Sosnowski, T.S.; Liu, C.H.; Galvanauskas, A.; Wise, F.W. Energy scaling of mode-locked fiber lasers with chirally-coupled core fiber. Opt. Express 2011, 19, 3464–3470. [Google Scholar] [CrossRef]
- Kharenko, D.S.; Podivilov, E.V.; Apolonski, A.A.; Babin, S.A. 20 nJ 200 fs all-fiber highly chirped dissipative soliton oscillator. Opt. Lett. 2012, 37, 4104. [Google Scholar] [CrossRef]
- Kharenko, D.S.; Gonta, V.A.; Babin, S.A. 50 nJ 250 fs all-fibre Raman-free dissipative soliton oscillator. Laser Phys. Lett. 2016, 13, 025107. [Google Scholar] [CrossRef]
- Wang, Z.; Zhan, L.; Fang, X.; Luo, H. Spectral filtering effect on mode-locking regimes transition: Similariton-dissipative soliton fiber laser. J. Opt. Soc. Am. B 2017, 34, 2325. [Google Scholar] [CrossRef]
- Kharenko, D.S.; Shtyrina, O.V.; Yarutkina, I.A.; Podivilov, E.V.; Fedoruk, M.P.; Babin, S.A. Highly chirped dissipative solitons as a one-parameter family of stable solutions of the cubic-quintic Ginzburg-Landau equation. J. Opt. Soc. Am. B 2011, 28, 2314–2319. [Google Scholar] [CrossRef]
- Ilday, F.O.; Buckley, J.R.; Clark, W.; Wise, F.W. Self-similar evolution of parabolic pulses in a laser. Phys. Rev. Lett. 2004, 92, 213902. [Google Scholar] [CrossRef]
- Dudley, J.M.; Finot, C.; Richardson, D.J.; Millot, G. Self-similarity in ultrafast nonlinear optics. Nat. Phys. 2007, 3, 597–603. [Google Scholar] [CrossRef]
- Zhou, X.; Yoshitomi, D.; Kobayashi, Y.; Torizuka, K. Generation of 28-fs pulses from a mode-locked ytterbium fiber oscillator. Opt. Express 2008, 16, 7055–7059. [Google Scholar] [CrossRef]
- Nie, B.; Pestov, D.; Wise, F.W.; Dantus, M. Generation of 42-fs and 10-nJ pulses from a fiber laser with self-similar evolution in the gain segment. Opt. Express 2011, 19, 12074–12080. [Google Scholar] [CrossRef]
- Iegorov, R.; Teamir, T.; Makey, G.; Ilday, F.Ö. Direct control of mode-locking states of a fiber laser. Optica 2016, 3, 1312. [Google Scholar] [CrossRef]
- Mamyshev, P. All-optical data regeneration based on self-phase modulation effect. In Proceedings of the 24th European Conference on Optical Communication, ECOC ’98 (IEEE Cat. No. 98TH8398) Telefonica, Madrid, Spain, 20–24 September 1998; Volume 1, pp. 475–476. [Google Scholar]
- Liu, W.; Liao, R.; Zhao, J.; Cui, J.; Song, Y.; Wang, C.; Hu, M. Femtosecond Mamyshev oscillator with 10-MW-level peak power. Optica 2019, 6, 194. [Google Scholar] [CrossRef]
- Ma, C.; Khanolkar, A.; Zang, Y.; Chong, A. Ultrabroadband, few-cycle pulses directly from a Mamyshev fiber oscillator. Photonics Res. 2020, 8, 65. Available online: http://xxx.lanl.gov/abs/1905.10049 (accessed on 5 December 2022). [CrossRef]
- Chong, A.; Renninger, W.H.; Wise, F.W. Route to the minimum pulse duration in normal-dispersion fiber lasers. Opt. Lett. 2008, 33, 2638–2640. [Google Scholar] [CrossRef] [PubMed]
- Kharenko, D.S.; Shtyrina, O.V.; Yarutkina, I.A.; Podivilov, E.V.; Fedoruk, M.P.; Babin, S.A. Generation and scaling of highly-chirped dissipative solitons in an Yb-doped fiber laser. Laser Phys. Lett. 2012, 9, 662–668. [Google Scholar] [CrossRef]
- Zhdanov, I.S.; Bednyakova, A.E.; Volosi, V.M.; Kharenko, D.S. Energy scaling of an erbium-doped mode-locked fiber laser oscillator. OSA Contin. 2021, 4, 2663. [Google Scholar] [CrossRef]
- Nyushkov, B.; Kobtsev, S.; Antropov, A.; Kolker, D.; Pivtsov, V. Femtosecond 78-nm Tunable Er:Fibre Laser Based on Drop-Shaped Resonator Topology. J. Light. Technol. 2019, 37, 1359–1363. [Google Scholar] [CrossRef]
- Nyushkov, B.N.; Kobtsev, S.M.; Koliada, N.A.; Antropov, A.A.; Pivtsov, V.S.; Yakovlev, A.V. Mode-locked fibre lasers with an adjustable drop-shaped cavity. Laser Phys. Lett. 2017, 14, 115101. [Google Scholar] [CrossRef]
- Kuznetsov, A.G.; Kharenko, D.S.; Babin, S.A. Amplification of dissipative solitons with a polarisation-maintaining tapered fibre amplifier. Quantum Electron. 2018, 48, 1105–1108. [Google Scholar] [CrossRef]
- Kieu, K.; Renninger, W.H.; Chong, A.; Wise, F.W. Sub-100 fs pulses at watt-level powers from a dissipative-soliton fiber laser. Opt. Lett. 2009, 34, 593–595. [Google Scholar] [CrossRef]
- Lin, J.H.; Wang, D.; Lin, K.H. High energy pulses generation with giant spectrum bandwidth and submegahertz repetition rate from a passively mode-locked Yb-doped fiber laser in all normal dispersion cavity. Laser Phys. Lett. 2011, 8, 66–70. [Google Scholar] [CrossRef]
- Yokokawa, S.; Jin, L.; Set, S.Y.; Yamashita, S. Coherent light source with 106 nm broadband spectrum generated directly from Yb-doped fiber oscillator. In Fiber Lasers XVII Technology and Systems; Dong, L., Zervas, M.N., Eds.; SPIE: Bellingham, WA, USA, 2020; Volume 11260, p. 112601L. [Google Scholar]
- Trebino, R.; DeLong, K.W. Measuring ultrashort laser pulses in the time-frequency domain using frequency-resolved optical gating. Rev. Sci. 1997, 68, 3277–3295. [Google Scholar] [CrossRef]
- Agrawal, G.P. Nonlinear Fiber Optics, 4th ed.; Elsevier: Amsteradm, The Netherlands, 2006. [Google Scholar]
- Hollenbeck, D.; Cantrell, C.D. Multiple-vibrational-mode model for fiber-optic Raman gain spectrum and response function. J. Opt. Soc. Am. B 2002, 19, 2886–2892. [Google Scholar] [CrossRef]
- Pyofss: Python-Based Optical Fibre System Simulator. 2021. Available online: https://github.com/galilley/pyofss (accessed on 5 December 2022).
- Bednyakova, A.E.; Babin, S.A.; Kharenko, D.S.; Podivilov, E.V.; Fedoruk, M.P.; Kalashnikov, V.L.; Apolonski, A. Evolution of dissipative solitons in a fiber laser oscillator in the presence of strong Raman scattering. Opt. Express 2013, 21, 20556–20564. [Google Scholar] [CrossRef] [PubMed]
- Bednyakova, A.E.; Kharenko, D.S.; Yarovikov, A.P. Numerical analysis of the transmission function of the NPE-based saturable absorber in a mode-locked fiber laser. J. Opt. Soc. Am. B 2020, 37, 2763. [Google Scholar] [CrossRef]
- Kruglov, V.I.; Thomsen, B.C.; Dudley, J.M.; Harvey, J.D. Self-similar propagation and amplification of parabolic pulses in optical fibers. Phys. Rev. Lett. 2000, 84, 6010–6013. [Google Scholar]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Abdrakhmanov, S.I.; Efremov, V.D.; Kuznetsov, A.G.; Kharenko, D.S.; Babin, S.A. Ultra-Broadband NPE-Based Femtosecond Fiber Laser. Photonics 2023, 10, 85. https://doi.org/10.3390/photonics10010085
Abdrakhmanov SI, Efremov VD, Kuznetsov AG, Kharenko DS, Babin SA. Ultra-Broadband NPE-Based Femtosecond Fiber Laser. Photonics. 2023; 10(1):85. https://doi.org/10.3390/photonics10010085
Chicago/Turabian StyleAbdrakhmanov, Sergei I., Vladislav D. Efremov, Alexey G. Kuznetsov, Denis S. Kharenko, and Sergey A. Babin. 2023. "Ultra-Broadband NPE-Based Femtosecond Fiber Laser" Photonics 10, no. 1: 85. https://doi.org/10.3390/photonics10010085
APA StyleAbdrakhmanov, S. I., Efremov, V. D., Kuznetsov, A. G., Kharenko, D. S., & Babin, S. A. (2023). Ultra-Broadband NPE-Based Femtosecond Fiber Laser. Photonics, 10(1), 85. https://doi.org/10.3390/photonics10010085