LSTM-Based DWBA Prediction for Tactile Applications in Optical Access Network
Abstract
:1. Introduction
- We proposed the SDN-enhanced NG-EPON architecture and operations;
- We propose a novel DWBA scheme that employs long-short term memory-dynamic wavelength bandwidth allocation (LSTM-DWBA) for emerging Tactile Internet applications into the network;
- We designed the LSTM-DWBA scheme as an offline scheduler with inter- and intra-traffic scheduling mechanisms;
- We build an LSTM model and train it into the bandwidth requests for the next cycle based on the past cycle’s historical data;
- The extensive simulation results LSTM-DWBA outperform the without prediction DWBA scheme (normal DWBA) in terms the accuracy;
- More specifically, the LSTM-DWBA scheme is reducing the bandwidth overhead and improves the bandwidth utilization;
- Furthermore, LSTM-DWBA can gain more users and tactile services in the network
2. Related Work
3. Overview of Long Short-Term Memory Architecture
4. Proposed System Model
4.1. Tactile Internet and Cloud-Based SD-NG-EPON Architecture and Operations
4.1.1. Application Services
4.1.2. Connection Service
4.1.3. Transport Service
4.2. LSTM–DWBA System Model
4.2.1. LSTM–DWBA Predictive Mechanism
4.2.2. LSTM-DWBA Operations
Algorithm 1: LSTM Based-DWBA | |
N Number of ONUs | |
ONU report message at the Ith cycle | |
t | Number of grants received in the Ith cycle from OLT |
Grant Assignment for next cycle | |
Number of GRANTs (bandwidth) arrive at the ONU in the next cycle predicted by LSTM | |
Pre-Grant Assignment for the Jth | |
Tr is traffic type where Tr | |
Input: Time series report message 1: : Time series Grant message 2: t Output: Grant Assignment for next cycle I. Prediction Phase 1. Calculate: 2. Get time series report 3: { t} 3. for (j = 1, j ≤ N, J++) = 4. End II. Grant Assignment Phase 5. Input: 6. 7. While ( 8. End 9. 10. |
5. Performance Evaluation
5.1. Dataset
5.2. Result and Analysis
5.2.1. Mean Packet Delay
5.2.2. TI Jitter
5.2.3. System Throughput
5.2.4. Packet Loss
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Zhang, C.; Shen, C.; Luo, Y.; Xu, S.; Chen, L.; Xu, Y.; Zhang, D.; Zhang, J.; Wang, B.; Jiang, M.; et al. Architectural Design and Life Cycle Management of Network Slicing for Software-Defined Optical Access Networks. IEEE Network 2022, 36, 82–88. [Google Scholar] [CrossRef]
- Chung, H.; Lee, H.H.; Kim, K.O.; Doo, K.H.; Ra, Y.; Park, C. TDM-PON-Based Optical Access Network for Tactile Internet, 5G, and Beyond. IEEE Network 2022, 36, 76–81. [Google Scholar] [CrossRef]
- Cisco Virtual Network Forecast Online. Available online: https://www.cisco.com/c/dam/m/en_us/solutions/service-provider/vni-forecast-highlights/pdf/Global_Device_Growth_Traffic_Profiles.pdf (accessed on 20 October 2022).
- IEEE P802.ca 50g-EPON Task Force Online. Available online: https://www.ieee802.org/3/ca/ (accessed on 20 October 2022).
- Hatem, J.A.; Dhaini, A.R.; Elbassuoni, S. Deep Learning-Based Dynamic Bandwidth Allocation for Future Optical Access Networks. IEEE Access 2019, 7, 97307–97318. [Google Scholar] [CrossRef]
- Wang, W.; Guo, W.; Hu, W. Mechanism Design and Performance Analysis of Coordinated Registration Protocol for NG-EPON. J. Opt. Commun. Netw. 2019, 11, 107–117. [Google Scholar] [CrossRef]
- IEEE. IEEE Standard for Ethernet Amendment 9: Physical Layer Specifications and Management Parameters for 25 Gb/s and 50 Gb/s Passive Optical Networks. In IEEE Std 802.3ca-2020 (Amendment to IEEE Std 802.3-2018 as Amended by IEEE 802.3cb-2018, IEEE 802.3bt-2018, IEEE 802.3cd-2018, IEEE 802.3cn-2019, IEEE 802.3cg-2019, IEEE 802.3cq-2020, IEEE 802.3cm-2020, and IEEE 802.3ch-2020; IEEE: Piscataway, NJ, USA, 2020; pp. 1–267. [Google Scholar]
- Mata, J.; de Miguel, I.; Duran, R.J.; Merayo, N.; Singh, S.K.; Jukan, A.; Chamania, M. Artificial Intelligence (AI) Methods in Optical Networks: A Comprehensive Survey. Opt. Switch. Netw. 2018, 28, 43–57. [Google Scholar] [CrossRef]
- Wong, E.; Dias, M.P.I.; Ruan, L. Predictive Resource Allocation for Tactile Internet Capable Passive Optical LANs. J. Light. Techn 2017, 35, 2629–2641. [Google Scholar] [CrossRef]
- Ruan, L.; Dias, M.P.I.; Wong, E. Machine Learning-Based Bandwidth Prediction for Low-Latency H2M Applications. IEEE Internet Thin. J. 2019, 6, 3743–3752. [Google Scholar] [CrossRef]
- Ruan, L.; Dias, M.P.I.; Wong, E. Achieving Low-Latency Human-to-Machine (H2M) Applications: An Understanding of H2M Traffic for AI-Facilitated Bandwidth Allocation. IEEE Internet Thin. J. 2021, 8, 626–635. [Google Scholar] [CrossRef]
- Theresal, T.; Therese, B. Gated Recurrent Unit Based Prediction Model for FrontHaul With XG-PON in CRAN Architecture. Optik 2022, 261, 169143. [Google Scholar] [CrossRef]
- Mondal, S.; Ruan, L.; Maier, M.; Larrabeiti, D.; Das, G.; Wong, E. Enabling Remote Human-to-Machine Applications With AI-Enhanced Servers Over Access Networks. IEEE Open J. Commun. Soc. 2022, 1, 889–899. [Google Scholar] [CrossRef]
- Yang, C.Z.; Lotfolahi, M.A.; Hwang, I.S.; Ab-Rahman, M.S.; Nikoukar, A.; Liem, A.T.; Ganesan, E. Enhancing Energy Efficiency of the Doze Mode Mechanism in Ethernet Passive Optical Networks Using Support Vector Regression. Photonics 2022, 9, 180. [Google Scholar] [CrossRef]
- Mikaeil, A.M.; Hu, W.; Hussain, S.B.; Sultan, A. Traffic-Estimation-Based Low-Latency XGS-PON Mobile Front-Haul for Small-Cell C-RAN Based on an Adaptive Learning Neural Network. Appl. Sci. 2018, 8, 1097. [Google Scholar] [CrossRef] [Green Version]
- Cao, B.; Zheng, X.; Yuan, K.; Qin, D.; Hong, Y. Dynamic Bandwidth Allocation Based on Adaptive Predictive for Low Latency Communications in Changing Passive Optical Networks Environment. Opti. Fib. Technol. 2021, 64, 102556. [Google Scholar] [CrossRef]
- Kim, K.; Lee, J.H.; Lim, H.K.; Oh, S.W. Deep RNN-based Network Traffic Classification Scheme in Edge Computing System. Comput. Sci. Inf. Syst. 2022, 19, 165–184. [Google Scholar] [CrossRef]
- Eramo, V.; Catena, T. Application of an Innovative Convolutional/LSTM Neural Network for Computing Resource Al-location in NFV Network Architectures. IEEE Trans. Netw. Serv. Manag. 2022, 19, 2929–2943. [Google Scholar] [CrossRef]
- Lopez-Martin, M.; Carro, B.; Sanchez-Esguevillas, A.; Lloret, J. Network Traffic Classifier with Convolutional and Recurrent Neural Networks for Internet of Things. IEEE Access 2017, 5, 18042–18050. [Google Scholar] [CrossRef]
- Yu, M.; Xu, F.; Hu, W.; Sun, J.; Cervone, G. Using Long Short-Term Memory (LSTM) and Internet of Things (IoT) for Localized Surface Temperature Forecasting in an Urban Environment. IEEE Access 2021, 9, 137406–137418. [Google Scholar] [CrossRef]
- Saha, B.N.; Senapati, A.; Saha, B.N.; Senapati, A. Long Short Term Memory (LSTM) based Deep Learning for Sentiment Analysis of English and Spanish Data. In Proceedings of the 2020 International Conference on Computational Performance Evaluation (ComPE), Shillong, India, 2–4 July 2020; pp. 442–446. [Google Scholar]
- Oruh, J.; Viriri, S.; Adegun, A. Long Short-Term Memory Recurrent Neural Network for Automatic Speech Recognition. IEEE Access 2022, 10, 30069–30079. [Google Scholar] [CrossRef]
- Ganesan, E.; Hwang, I.S.; Liem, A.T.; Ab-Rahman, M.S. 5G-Enabled Tactile Internet Resource Provision via Software-Defined Optical Access Networks (SDOANs). Photonics 2021, 8, 140. [Google Scholar] [CrossRef]
- Robinson, M.; Milosavljevic, M.; Kourtessis, P.; Stafford, G.P.; Burrell, M.J.; Senior, J.M. Software Defined Networking for Heterogeneous Access Networks. In Proceedings of the 2016 18th International Conference on Transparent Optical Networks (ICTON), Trento, Italy, 10–14 July 2016; pp. 1–4. [Google Scholar] [CrossRef]
- Liem, A.T.; Sandag, G.A.; Hwang, I.S.; Nikoukar, A. Delay analysis of Dynamic Bandwidth Allocation for Triple-Play-Services in EPON. In Proceedings of the 2017 5th International Conference on Cyber and IT Service Management (CITSM), Denpasar, Bali, Indonesia, 8–10 August 2017; pp. 1–6. [Google Scholar]
- Liem, A.T.; Hwang, I.S.; Nikoukar, A.; Yang, C.Z.; Ab-Rahman, M.S.; Lu, C.H. P2P Live-Streaming Application-Aware Architecture for QoS Enhancement in the EPON. IEEE Syst. J. 2018, 12, 648–658. [Google Scholar] [CrossRef]
- Hwang, I.S.; Lee, J.; Lai, K.; Liem, A.T. Generic QoS-Aware Interleaved Dynamic Bandwidth Allocation in Scalable EPONs. J. Opt. Commun. Netw. 2012, 4, 99–107. [Google Scholar] [CrossRef]
- Chen, W.P.; Kau, S.W.; Liao, B.Y.; Hwang, W.S.; Hu, W.T. A Sort-Based DBA Algorithm for EPON System. In Proceedings of the 2008 Eighth International Conference on Intelligent Systems Design and Applications, Kaohsiung, Taiwan, 26–28 November 2008; pp. 223–228. [Google Scholar]
- Kramer, G. How Efficient Is EPON? Available online: http://research.glenkramer.com/papers/epon_efficiency.pdf (accessed on 26 October 2022).
- Hajduczenia, M.; da Silva, H.J.; Monterio, P.P. EPON versus APON and GPON: A Detailed Performance Comparison. J. Opt. Netw. 2006, 5, 298–319. [Google Scholar] [CrossRef]
- Nikoukar, A.; Hwang, I.S.; Wang, C.J.; Ab-Rahman, M.S.; Liem, A.T. A SIEPON Based Transmitter Sleep Mode Energy Efficient Mechanism in EPON. Opt. Fiber Technol. 2015, 823, 78–89. [Google Scholar] [CrossRef]
- The 2022 Global Internet Phenomena Report: Online. Available online: https://www.sandvine.com/global-internet-phenomena-report-2022 (accessed on 20 December 2022).
- Nikoukar, A.; Hwang, I.S.; Liem, A.T.; Wang, C.J. QoS-Aware Energy-Efficient Mechanism for Sleeping Mode ONUs in Enhanced EPON. Phot. Netw. Commun. 2015, 30, 59–79. [Google Scholar] [CrossRef]
- Hwang, I.S.; Nikoukar, A.; Tseng, C.H.; Lai, K.R. Scalable Architecture for VOD Services Enhancement Based on a cache Scheme in an Ethernet Passive Optical Network. J. Opt. Commun. Netw. 2013, 5, 271–282. [Google Scholar] [CrossRef]
Parameters | Value |
---|---|
Number of SD-ONUs | 64 |
Number of wavelengths | 2 |
Up/down link-rate | 1–25 Gbps |
SD-OLT/SD-ONU distance | Uniform 10–20 km |
Maximum transmission cycle time | 1 ms, 1.5 ms |
Guard time | 1 μs |
DWBA Computation time | 10 μs |
ONU Buffer Size | 10 MB |
EF Traffic distribution/Packet size | Poisson/70 bytes |
TI Traffic Distribution | Pareto |
AF, BE Traffic Distribution | Uniform |
TI, AF, BE Packet Size | 64–1518 |
Regions | Scenario | EF% | TI% | AF% | BE% |
---|---|---|---|---|---|
APAC | S1-DWBA/LSTM-DWBA (10%:40 (15%) 50 | 10% | 6% | 34% | 50% |
EMEA | S2-DWBA/LSTM-DWBA (10%:50 (15%) 40 | 10% | 7.5% | 42.5% | 40% |
AMERICA | S3-DWBA/LSTM-DWBA (10%:60 (15%) 30 | 10% | 9% | 51% | 30% |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ganesan, E.; Liem, A.T.; Hwang, I.-S.; Ab-Rahman, M.S.; Taju, S.W.; Sheikh, M.N.A. LSTM-Based DWBA Prediction for Tactile Applications in Optical Access Network. Photonics 2023, 10, 37. https://doi.org/10.3390/photonics10010037
Ganesan E, Liem AT, Hwang I-S, Ab-Rahman MS, Taju SW, Sheikh MNA. LSTM-Based DWBA Prediction for Tactile Applications in Optical Access Network. Photonics. 2023; 10(1):37. https://doi.org/10.3390/photonics10010037
Chicago/Turabian StyleGanesan, Elaiyasuriyan, Andrew Tanny Liem, I-Shyan Hwang, Mohammad Syuhaimi Ab-Rahman, Semmy Wellem Taju, and Mohammad Nowsin Amin Sheikh. 2023. "LSTM-Based DWBA Prediction for Tactile Applications in Optical Access Network" Photonics 10, no. 1: 37. https://doi.org/10.3390/photonics10010037
APA StyleGanesan, E., Liem, A. T., Hwang, I. -S., Ab-Rahman, M. S., Taju, S. W., & Sheikh, M. N. A. (2023). LSTM-Based DWBA Prediction for Tactile Applications in Optical Access Network. Photonics, 10(1), 37. https://doi.org/10.3390/photonics10010037