Photonics—Advances in Fundamental Sciences and Engineering Technologies of Light
Acknowledgments
Conflicts of Interest
References
- Maxwell, J.C. A dynamical theory of the electromagnetic field. Phil. Trans. R. Soc. Lond. 1865. [Google Scholar] [CrossRef]
- Born, M.; Wolf, E. Principles of Optics; Cambridge University Press: Cambridge, UK, 2002. [Google Scholar]
- Liang, X.; Graf, B.W.; Boppart, S.A. Imaging engineered tissues using structural and functional optical coherence tomography. J. Biophotonics. 2009, 2, 643–655. [Google Scholar] [CrossRef]
- Linninger, A.A. Biomedical systems research—New perspectives opened by quantitative medical imaging. Comput. Chem. Eng. 2012, 36, 1–9. [Google Scholar] [CrossRef]
- Svanberg, S. Biophotonics-techniques and applications. Laser Photon. Rev. 2013, 7, A43–A44. [Google Scholar] [CrossRef]
- West, J.L.; Halas, N.J. Engineered nanomaterials for biophotonics applications: Improving sensing, imaging, and therapeutics. Annu. Rev. Biomed. Eng. 2003, 5, 285–292. [Google Scholar] [CrossRef]
- Boustany, N.N.; Boppart, S.A.; Backman, V. Microscopic imaging and spectroscopy with scattered light. Annu. Rev. Biomed. Eng. 2010, 12, 285–314. [Google Scholar] [CrossRef]
- Deisseroth, K. Optogenetics. Nat. Method. 2011, 8, 26–29. [Google Scholar] [CrossRef]
- Coleman, J.J.; Young, J.D.; Garg, A. Semiconductor quantum dot lasers: A tutorial. J. Lightwave. Tech. 2011, 29, 499–510. [Google Scholar] [CrossRef]
- Vurgaftman, I.; Bewley, W.W.; Canedy, C.L.; Kim, C.S.; Kim, M.; Lindle, J.R.; Merritt, C.D.; Abell, J.; Meyer, J.R. Mid-IR type-II interband cascade lasers. IEEE J. Sel. Top. Quant. 2011, 17, 1435–1444. [Google Scholar] [CrossRef]
- Tansu, N.; Yeh, J.Y.; Mawst, L.J. Physics and characteristics of 1200-nm InGaAs and 1300–1400 nm InGaAsN quantum-well lasers by metalorganic chemical vapor deposition. J. Phys. Condens. Matter Phys. 2004, 16, S3277–S3318. [Google Scholar] [CrossRef]
- Bank, S.R.; Bae, H.; Goddard, L.L.; Yuen, H.B.; Wistey, M.A.; Kudrawiec, R.; Harris, J.S. Recent progress on 1.55 µm dilute-nitride lasers. IEEE J. Quantum Elect. 2007, 43, 773–785. [Google Scholar] [CrossRef]
- Reece, P.J.; Jagadish, C. Semiconductor nanostructure optoelectronics. Mater. Sci. En. B Adv. 2012, 177, 695–695. [Google Scholar] [CrossRef]
- Beling, A.; Campbell, J.C. InP-based high-speed photodetectors. J. Lightwave. Technol. 2009, 27, 343–355. [Google Scholar] [CrossRef]
- Feezell, D.F.; Speck, J.S.; DenBaars, S.P.; Nakamura, S. Semipolar (2021) InGaN/GaN light-emitting diodes for high-efficiency solid-state lighting. J. Display Technol. 2013, 9, 190–198. [Google Scholar] [CrossRef]
- Wierer, J.J.; Tsao, J.Y.; Sizov, D.S. Comparison between blue lasers and light-emitting diodes for future solid-state lighting. Laser Photon. Rev. 2013, 7, 963–993. [Google Scholar] [CrossRef]
- Zhao, H.P.; Liu, G.Y.; Zhang, J.; Poplawsky, J.D.; Dierolf, V.; Tansu, N. Approaches for high internal quantum efficiency green InGaN light-emitting diodes with large overlap quantum wells. Opt. Express 2011, 19, A991–A1007. [Google Scholar] [CrossRef]
- Zhang, J.; Tansu, N. Engineering of AlGaN-Delta-GaN quantum wells gain media for mid- and deep-ultraviolet lasers. IEEE Photon. J. 2013, 5, 2600209. [Google Scholar] [CrossRef]
- Faist, J.; Capasso, F.; Sivco, D.L.; Sirtori, C.; Hutchinson, A.L.; Cho, A.Y. Quantum cascade laser. Science 1994, 264, 553–556. [Google Scholar]
- Kumar, S.; Hu, Q.; Reno, J.L. 186 K operation of terahertz quantum-cascade lasers based on a diagonal design. Appl. Phys. Lett. 2009, 94. [Google Scholar] [CrossRef]
- Butler, J.K.; Ackley, D.E.; Botez, D. Coupled-mode analysis of phase-locked injection laser arrays. Appl. Phys. Lett. 1984, 44, 293–295. [Google Scholar] [CrossRef]
- Kanskar, M.; Earles, T.; Goodnough, T.J.; Stiers, E.; Botez, D.; Mawst, L.J. 73% CW power conversion efficiency at 50 W from 970 nm diode laser bars. Electron. Lett. 2005, 41, 245–247. [Google Scholar] [CrossRef]
- Yablonovitch, E. Inhibited spontaneous emission in solid-state physics and electronics. Phys. Rev. Lett. 1995, 340, 841–844. [Google Scholar]
- John, S. Strong localization of photons in certain disordered dielectric superlattices. Phys. Rev. Lett. 1987, 58, 2486–2489. [Google Scholar] [CrossRef]
- Yablonovitch, E.; Gmitter, T.J. Photonic band structure: The face-centered-cubic case. Phys. Rev. Lett. 63, 1989. [CrossRef]
- Johnson, S.G.; Villeneuve, P.R.; Fan, S.H.; Joannopoulos, J.D. Linear waveguides in photonic-crystal slabs. Phys. Rev. B 2000, 62, 8212–8222. [Google Scholar]
- Norris, D.J. Photonic crystals: A view of the future. Nat. Mater. 2007, 6, 177–178. [Google Scholar] [CrossRef]
- Mohseni, P.K.; Kim, S.H.; Zhao, X.; Balasundaram, K.; Kim, J.D.; Pan, L.; Rogers, J.A.; Coleman, J.J.; Li, X. GaAs pillar array-based light emitting diode fabricated by metal-assisted chemical etching. J. Appl. Phys. 2013, 114, 064909. [Google Scholar] [CrossRef]
- Chang-Hasnain, C.J.; Yang, W. High-contrast gratings for integrated optoelectronics. Adv. Optic. Photon. 2012, 4, 379–440. [Google Scholar] [CrossRef]
- Karagodsky, V.; Sedgwick, F.G.; Chang-Hasnain, C.J. Theoretical analysis of subwavelength high contrast grating reflectors. Optic. Express 2010, 18, 16973–16988. [Google Scholar] [CrossRef]
- Li, X.H.; Song, R.B.; Ee, Y.K.; Kumnorkaew, P.; Gilchrist, J.F.; Tansu, N. Light extraction efficiency and radiation patterns of III-Nitride light-emitting diodes with colloidal microlens arrays with various aspect ratios. IEEE Photon. J. 2011, 3, 489–499. [Google Scholar] [CrossRef]
- Koo, W.H.; Youn, W.; Zhu, P.F.; Li, X.H.; Tansu, N.; So, F. Light extraction of organic light emitting diodes using defective hexagonal-close-packed array. Adv. Function. Mater. 2012, 22, 3454–3459. [Google Scholar] [CrossRef]
- Lin, Q.; Rosenberg, J.; Chang, D.; Camacho, R.; Eichenfield, M.; Vahala, K.J.; Painter, O. Coherent mixing of mechanical excitations in nano-optomechanical structures. Nat. Photon. 2010, 4, 236–244. [Google Scholar] [CrossRef]
- Poot, M.; Tang, H. Broadband nanoelectromechanical phase shifting of light on a chip. Appl. Phys. Lett. 2014, 104. [Google Scholar] [CrossRef]
- Grundmann, M.; Stier, O.; Bimberg, D. InAs/GaAs pyramidal quantum dots: Strain distribution, optical phonons, and electronic structure. Phys. Rev. B 1995, 52, 11969–11981. [Google Scholar] [CrossRef]
- Liu, G.T.; Stintz, A.; Li, H.; Malloy, K.J.; Lester, L.F. Extremely low room-temperature threshold current density diode lasers using InAs dots in In 0.15 Ga 0.85 As quantum well. Electron. Lett. 1999, 35, 1163–1165. [Google Scholar] [CrossRef]
- Gu, T.; El-Emawy, M.A.; Yang, K.; Stintz, A.; Lester, L.F. Resistance to edge recombination in GaAs-based dots-in-a-well solar cells. Appl. Phys. Lett. 2009, 95. [Google Scholar] [CrossRef]
- Huffaker, D.L.; Park, G.; Zou, Z.; Shchekin, O.B.; Deppe, D.G. 1.3 μm room-temperature GaAs-based quantum-dot laser. Appl. Phys. Lett. 1998, 73. [Google Scholar] [CrossRef]
- Santori, C.; Fattal, D.; Vuckovic, J.; Solomon, G.S.; Yamamoto, Y. Indistinguishable photons from a single-photon device. Nature 2002, 419, 594–597. [Google Scholar] [CrossRef]
- Buckley, S.; Rivoire, K.; Vuckovic, J. Engineered quantum dot single-photon sources. Rep. Prog. Phys. 2012, 75. [Google Scholar] [CrossRef]
- Hess, J.B.; Pendry, S.A.; Maier, R.F.; Oulton, J.M.; Hamm, K.L. Active nanoplasmonic metamaterials. Nat. Mater. 2012, 11, 573–584. [Google Scholar] [CrossRef]
- Soukoulis, C.M.; Wegener, M. Past achievements and future challenges in the development of three-dimensional photonic metamaterials. Nat. Photon. 2011, 5, 523–530. [Google Scholar]
- Kadic, M.; Buckmann, T.; Schittny, R.; Wegener, M. Metamaterials beyond electromagnetism. Rep. Prog. Phys. 2013, 76. [Google Scholar] [CrossRef]
- Bilotti, F.; Sevgi, L. Metamaterials: Definitions, properties, applications, and FDTD-based modeling and simulation. Int. J. RF Microw. CAE 2012, 22, 422–438. [Google Scholar] [CrossRef]
- Naik, G.V.; Shalaev, V.M.; Boltasseva, A. Alternative plasmonic materials: Beyond gold and silver. Adv. Mater. 2013, 25, 3264–3294. [Google Scholar] [CrossRef]
- Atwater, H.A.; Polman, A. Plasmonics for improved photovoltaic devices. Nat. Mater. 2010, 9, 205–213. [Google Scholar] [CrossRef]
- Gan, Q.; Bartoli, F.J.; Kafafi, Z.H. Plasmonic-enhanced organic photovoltaics: Breaking the 10% efficiency barrier. Adv. Mater. 2013, 25, 2385–2396. [Google Scholar] [CrossRef]
- Kaminow, I.; Li, T.; Willner, A.E. Optical Fiber Telecommunications Volume VIA: Components and Subsystems; Academic Press: San Diego, CA, USA, 2013. [Google Scholar]
- Kaminow, I.; Li, T.; Willner, A.E. Optical Fiber Telecommunications Volume VIB: Systems and Networks; Academic Press: San Diego, CA, USA, 2013. [Google Scholar]
- Koch, T.L.; Koren, U. Semiconductor photonics integrated circuits. IEEE J. Quantum Electron. 1991, 27, 641–653. [Google Scholar] [CrossRef]
- Kish, F.A.; Welch, D.; Nagarajan, R.; Pleumeekers, J.L.; Lal, V.; Ziari, M.; Nilsson, A.; Kato, M.; Murthy, S.; Evans, P.; et al. Current status of large-scale InP photonic integrated circuits. IEEE J. Sel. Top. Quantum Electron. 2011, 17, 1470–1489. [Google Scholar] [CrossRef]
- Coldren, L.A. Monolithic tunable diode lasers. IEEE J. Sel. Top. Quantum Electron. 2000, 6, 988–999. [Google Scholar] [CrossRef]
- Koch, T.L. III-V and Silicon Photonic Integrated Circuit Technologies. In Proceedings of the Optical Fiber Communication Conference, Los Angeles, CA, USA, 4–8 March 2012. paper OTh4D.1.
- Dai, D.; Bauters, J.; Bowers, A.J.E. Passive technologies for future large-scale photonic integrated circuits on silicon: polarization handling, light non-reciprocity and loss reduction. Light Sci. Appl. 2012, 1, e1. [Google Scholar] [CrossRef]
- Weiner, A.M. Ultrafast optical pulse shaping: A tutorial review. Opt. Commun. 2011, 284, 3669–3692. [Google Scholar] [CrossRef]
- Weiner, A.M. Ultrafast Optics; Wiley: Hoboken, NJ, USA, 2009. [Google Scholar]
- Dudley, J.M.; Taylor, J.R. Ten years of nonlinear optics in photonic crystal fibre. Nat. Photon. 2009, 3, 85–90. [Google Scholar] [CrossRef]
- Boyd, R.W. Slow and fast light: Fundamentals and applications. J. Modern Optic. 2009, 56, 18–19. [Google Scholar]
- Boyd, R.W. Nonlinear Optics; Academic Press: San Diego, CA, USA, 2003. [Google Scholar]
- Zhao, P.; Ragam, S.; Ding, Y.J.; Zotova, I.B. Compact and portable terahertz source by mixing two frequencies generated simultaneously by a single solid-state laser. Opt. Lett. 2010, 35, 3979–3981. [Google Scholar] [CrossRef]
- Taflove, A.; Johnson, S.G.; Oskooi, A. Advances in FDTD Computational Electrodynamics: Photonics and Nanotechnology; Artech House: Norwood, MA, USA, 2013. [Google Scholar]
- Liu, V.; Miller, D.A.B.; Fan, S.H. Highly tailored computational electromagnetics methods for nanophotonic design and discovery. Proc. IEEE 2013, 101, 484–493. [Google Scholar] [CrossRef]
- Van de Walle, C.G.; Janotti, A. Advances in electronic structure methods for defects and impurities in solids. Phys. Status Solid. B 2011, 248, 19–27. [Google Scholar] [CrossRef]
- Tan, C.K.; Zhang, J.; Li, X.H.; Liu, G.Y.; Tayo, B.O.; Tansu, N. First-principle electronic properties of dilute-As GaNAs alloy for visible light emitters. J. Display Technol. 2013, 9, 272–279. [Google Scholar] [CrossRef]
- Lany, S.; Zunger, A. Assessment of correction methods for the band-gap problem and for finite-size effects in supercell defect calculations: Case studies for ZnO and GaAs. Phys. Rev. B 2008, 78. [Google Scholar] [CrossRef]
- Li, S.; Fu, Y. 3D TCAD Simulation for Semiconductor Processes, Devices and Optoelectronics; Springer: Berlin, Germany, 2012. [Google Scholar]
- Liu, G.Y.; Zhang, J.; Tan, C.K.; Tansu, N. Efficiency-droop suppression by using large-bandgap AlGaInN thin barrier layers in InGaN quantum wells light-emitting diodes. IEEE Photon. J. 2013, 2, 2201011. [Google Scholar] [CrossRef]
- Pavesi, L.; Vivien, L. Handbook of Silicon Photonics; Taylor & Francis: Boca Raton, FL, USA, 2013. [Google Scholar]
- Jalali, B.; Fathpour, S. Silicon photonics. J. Lightwave Technol. 2006, 24, 4600–4615. [Google Scholar] [CrossRef]
- Soref, R. The past, present, and future of silicon photonics. IEEE J. Sel. Top. Quantum Electron. 2006, 12, 1678–1687. [Google Scholar] [CrossRef]
- Foster, M.A.; Turner, A.C.; Sharping, J.E.; Schmidt, B.S.; Lipson, M.; Gaeta, A.L. Broad-band optical parametric gain on a silicon photonic chip. Nature 2006, 441, 960–963. [Google Scholar] [CrossRef]
- Avouris, P. Graphene: Electronic and photonic properties and devices. Nano Lett. 2010, 10, 4285–4294. [Google Scholar] [CrossRef]
- Grigorenko, N.; Polini, M.; Novoselov, K.S. Graphene plasmonics. Nat. Photon. 2012, 6, 749–758. [Google Scholar] [CrossRef]
- Sun, Y.; Rogers, J.A. Inorganic semiconductors for flexible electronics. Adv. Mater. 2007, 19, 1897–1916. [Google Scholar] [CrossRef]
- Reuss, R.H.; Chalamala, B.R.; Moussessian, A.; Kane, Michael G.; Kumar, A.; Zhang, D.C.; Rogers, J.A.; Hatalis, M.; Temple, D.; Moddel, G.; Eliasson, B.J.; Estes, M.J.; et al. Macroelectronics: Perspectives on technology and applications. Proc. IEEE 2005, 93, 1239–1256. [Google Scholar] [CrossRef]
- Hu, S.; Xiang, C.; Haussener, S.; Berger, A.D.; Lewis, N.S. An analysis of the optimal band gaps of light absorbers in integrated tandem photoelectrochemical water-splitting systems. Energy Environ. Sci. 2013, 6, 2984–2993. [Google Scholar] [CrossRef]
- Walter, M.G.; Warren, E.L.; McKone, J.R.; Boettcher, S.W.; Mi, Q.; Santori, E.A.; Lewis, N.S. Solar water splitting cells. Chem. Rev. 2010, 110, 6446–6473. [Google Scholar] [CrossRef]
- Phivilay, S.P.; Roberts, C.A.; Puretzky, A.A.; Domen, K.; Wachs, I.E. Fundamental Bulk/surface structure photoactivity relationships of supported (Rh2-yCryO3)/GaN photocatalysts. J. Phys. Chem. Lett. 2013, 4, 3719–3724. [Google Scholar] [CrossRef]
- Chen, G. Nanoscale Energy Transport and Conversion: A Parallel Treatment of Electrons, Molecules, Phonons, and Photons; Oxford University Press: Oxford, UK, 2005. [Google Scholar]
© 2014 by the authors; licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution license (http://creativecommons.org/licenses/by/3.0/).
Share and Cite
Tansu, N. Photonics—Advances in Fundamental Sciences and Engineering Technologies of Light. Photonics 2014, 1, 1-8. https://doi.org/10.3390/photonics1010001
Tansu N. Photonics—Advances in Fundamental Sciences and Engineering Technologies of Light. Photonics. 2014; 1(1):1-8. https://doi.org/10.3390/photonics1010001
Chicago/Turabian StyleTansu, Nelson. 2014. "Photonics—Advances in Fundamental Sciences and Engineering Technologies of Light" Photonics 1, no. 1: 1-8. https://doi.org/10.3390/photonics1010001
APA StyleTansu, N. (2014). Photonics—Advances in Fundamental Sciences and Engineering Technologies of Light. Photonics, 1(1), 1-8. https://doi.org/10.3390/photonics1010001