Macroinvertebrate Communities of Non-Glacial Alpine Streams in Western North America’s Coast Mountains
Abstract
1. Introduction
1.1. Alpine Streams
Glacial | Non-Glacial | |
---|---|---|
Temperature | Low, <2 °C near glacier snout, increasing downstream [26]; narrow range | High in the summer, 2–15 °C [14]; wide range |
Turbidity | High, >30 NTU [26] | Low [13] |
Channel stability | Unstable near glacier; often braided or meandering [29] | Stable, less braided [28] |
Peak flows | Strong diel flow variations throughout summer, one annual peak at maximum summer air temperatures [18] | Often spring and fall peaks; low daily variation; lower variation, mediated by rainfall [14] |
1.2. Invertebrate Communities in Alpine Streams
1.3. Objectives
2. Materials and Methods
2.1. Study Site
2.2. Sampling
2.3. Statistical Analyses
3. Results
3.1. Environmental Variables Analyses
3.2. Community Analyses
3.3. Regression Analyses
3.4. Non-Metric Multidimensional Scaling Analysis
4. Discussion
4.1. Water Quality
4.2. Macroinvertebrates
4.3. Beta Diversity
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Appendix A
PC1 | PC2 | PC3 | |
---|---|---|---|
Gradient | 0.5575 | −0.6099 | −0.5632 |
Bankfull Width | −0.7258 | −0.0288 | −0.6873 |
pH | 0.4030 | 0.7919 | −0.4588 |
PC1 | PC2 | PC3 | |
---|---|---|---|
BW1 | −0.42 | 0.72 | 0.64 |
BW2 | −0.91 | 0.24 | 0.14 |
BW3 | −1.07 | −1.01 | 0.11 |
BW4 | −2.36 | 0.20 | −0.64 |
BW5 | 1.07 | 2.20 | −0.20 |
BW6 | 1.97 | -0.83 | −0.60 |
BW7 | 0.74 | 0.16 | 0.19 |
BW8 | 0.77 | −1.00 | 0.29 |
BW9 | 0.22 | −0.70 | 0.08 |
Taxa | Total Individuals | Number of Streams | Order/Family | FFG |
---|---|---|---|---|
Ameletus | 70 | 9 | Ephemeroptera/Ameletidae | SC/CG |
Baetis | 521 | 8 | Ephemeroptera/Baetidae | CG |
Drunella doddsi | 35 | 4 | Ephemeroptera/Ephemerellidae | SC |
Seratella | 1 | 1 | Ephemeroptera/Ephemerellidae | CG |
Eurylophella | 103 | 6 | Ephemeroptera/Ephemerellidae | CG |
Rhithrogena | 305 | 7 | Ephemeroptera/Heptageniidae | SC |
Cinygmula | 649 | 9 | Ephemeroptera/Heptageniidae | SC |
Epeorus | 145 | 7 | Ephemeroptera/Heptageniidae | SC |
Paraleptophlebia | 790 | 8 | Ephemeroptera/Leptophlebiidae | CG |
Zapada haysi | 3 | 3 | Plecoptera/Nemouridae | SH |
Zapada frigida | 860 | 9 | Plecoptera/Nemouridae | SH |
Malenka | 4 | 4 | Plecoptera/Nemouridae | SH |
Visoka | 14 | 4 | Plecoptera/Nemouridae | SH |
Podmosta | 450 | 6 | Plecoptera/Nemouridae | SH |
Capnia | 37 | 8 | Plecoptera/Capniidae | SH |
Kathroperla | 26 | 6 | Plecoptera/Chloroperlidae | CG |
Other Chloroperlidae | 505 | 9 | Plecoptera/Chloroperlidae | PR |
Setvena | 4 | 2 | Plecoptera/Perlodidae | PR |
Megarcys | 2 | 2 | Plecoptera/Perlodidae | PR |
Perlodid 1 | 109 | 9 | Plecoptera/Perlodidae | PR |
Taeniopterygidae | 160 | 3 | Plecoptera/Taeniopterygidae | SH |
Moselia | 4 | 1 | Plecoptera/Leuctridae | SH |
Perlomyia | 26 | 5 | Plecoptera/Leuctridae | SH |
Agapetus | 4 | 2 | Trichoptera/Glossosomatidae | SC |
Parapsyche | 7 | 4 | Trichoptera/Hydropsychidae | CF |
Arctopsyche | 2 | 2 | Trichoptera/Hydropsychidae | CF |
Rhyacophila | 100 | 8 | Trichoptera/Rhyacophilidae | PR/CG |
Polycentropus | 3 | 3 | Trichoptera/Polycentropodidae | PR/CF |
Lepidostomatidae | 3 | 3 | Trichoptera/Lepidostomatidae | SH |
Micrasema | 6 | 3 | Trichoptera/Brachycentridae | SH/CG |
Frenesia | 1 | 1 | Trichoptera/Limnephilidae | SH |
Allomyia | 2 | 1 | Trichoptera/Limnephilidae | SH/SC |
Ecclisomyia | 2 | 1 | Trichoptera/Limnephilidae | CG |
Phanocelia | 3 | 2 | Trichoptera/Limnephilidae | SH |
Limnephilidae spp. | 6 | 4 | Trichoptera/Limnephilidae | SH |
Neothremma | 6 | 3 | Trichoptera/Uenoidae | SC/CG |
Corydalidae | 1 | 1 | Megaloptera/Corydalidae | PR |
Tanytarsini | 54 | 8 | Diptera/Chironomidae | CF/CG |
Tanypodinae | 88 | 9 | Diptera/Chironomidae | PR |
Brillia retifinis | 369 | 9 | Diptera/Chironomidae | SH/CG |
Corynoneura | 269 | 9 | Diptera/Chironomidae | CG |
Cricotopus | 466 | 5 | Diptera/Chironomidae | SH/CG |
Other Orthocladiinae | 1650 | 9 | Diptera/Chironomidae | CG/SC |
Chironomid 1 | 3 | 2 | Diptera/Chironomidae | CG/SC |
Ceratopogonidae | 156 | 8 | Diptera/Chironomidae | PR |
Simuliidae | 268 | 5 | Diptera | CF |
Chelifera | 54 | 7 | Diptera/Empididae | -- |
Oreogeton | 154 | 7 | Diptera/Empididae | -- |
Tipulidae | 1 | 1 | ||
Dytiscidae | 1 | 1 | PR | |
Colembolla | 42 | 9 | ||
Ostracoda | 165 | 5 | -- | -- |
Copepoda | 41 | 4 | -- | -- |
Oligochaeta | 474 | 8 | -- | -- |
Turbellaria | 124 | 7 | -- | -- |
Nematoda | 310 | 9 | -- | -- |
Acari | 454 | 9 | -- | -- |
References
- IPCC. Climate Change: Synthesis Report. In Contribution of Working Groups I, II and III to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change; Pachauri, R.K., Meyer, L., Eds.; IPCC: Geneva, Switzerland, 2014. [Google Scholar]
- Salathé, E.P.; Steed, R.; Mass, C.F.; Zahn, P.H. A high-resolution climate model for the U.S. Pacific northwest: Mesoscale feedbacks and local responses to climate change. J. Clim. 2008, 21, 5708–5726. [Google Scholar] [CrossRef]
- Clarke, G.K.C.; Jarosch, A.H.; Anslow, F.S.; Radić, V.; Menounos, B. Projected deglaciation of western Canada in the twenty-first century. Nat. GeoSci. 2015, 8, 372–377. [Google Scholar] [CrossRef]
- Pederson, G.T.; Graumlich, L.J.; Fagre, D.B.; Kipfer, T.; Muhlfeld, C.C. A century of climate and ecosystem change in Western Montana: What do temperature trends portend? Clim. Change 2010, 98, 133–154. [Google Scholar] [CrossRef]
- McCullough, I.M.; Davis, F.W.; Dingman, J.R.; Flint, L.E.; Serra-Diaz, J.M.; Syphard, A.D.; Moritz, M.A.; Hannah, L.; Franklin, J. High and dry: High elevations disproportionately exposed to regional climate change in Mediterranean-climate landscapes. Landsc. Ecol. 2016, 31, 1063–1075. [Google Scholar] [CrossRef]
- Beniston, M.; Farinotti, D.; Stoffel, M.; Andreassen, L.M.; Coppola, E.; Eckert, N.; Fantini, A.; Giacona, F.; Hauck, C.; Huss, M.; et al. The European mountain cryosphere: A review of its current state, trends, and future challenges. Cryosphere 2018, 12, 759–794. [Google Scholar] [CrossRef]
- Barnett, T.P.; Adam, P.; Lettenmaier, J.C. Potential impacts of a warming climate on water availability in snow-dominated regions. Nature 2005, 438, 303–309. [Google Scholar] [CrossRef] [PubMed]
- von Fumetti, S.; Bieri-Wigger, F.; Nagel, P. Temperature variability and its influence on macroinvertebrate assemblages of alpine springs. Ecohydrology 2017, 10, e1878. [Google Scholar] [CrossRef]
- Brown, L.E.; Hannah, D.M.; Milner, A.M. Hydroclimatological influences on water column and streambed thermal dynamics in an alpine river system. J. Hydrol. 2006, 325, 1–20. [Google Scholar] [CrossRef]
- Walters, A.W.; Post, D.M. How low can you go? Impacts of a low-flow disturbance on aquatic insect communities. Ecol. Applic. 2011, 21, 163–174. [Google Scholar] [CrossRef]
- Piano, E.; Doretto, A.; Mammola, S.; Falasco, E.; Fenoglio, S.; Bona, F. Taxonomic and functional homogenisation of macroinvertebrate communities in recently intermittent Alpine watercourses. Freshwat. Biol. 2020, 65, 2096–2107. [Google Scholar] [CrossRef]
- Füreder, L. High alpine streams: Cold habitats for insect larvae. In Cold-Adapted Organisms; Margesin, R., Schinner, F., Eds.; Springer: Berlin/Heidelberg, Germany, 1999; pp. 181–196. [Google Scholar]
- Brown, L.E.; Hannah, D.M.; Milner, A.M. Alpine stream habitat classification: An alternative approach incorporating the role of dynamic water source contributions. Arct. Antarct. Alp. Res. 2003, 35, 313–322. [Google Scholar] [CrossRef]
- Ward, J.V. Ecology of alpine streams. Freshwat. Biol. 1994, 32, 277–294. [Google Scholar] [CrossRef]
- Khamis, K.; Brown, L.E.; Hannah, D.M.; Milner, A.M. Glacier–groundwater stress gradients control alpine river biodiversity. Ecohydrology 2016, 9, 1263–1275. [Google Scholar] [CrossRef]
- Milner, A.M.; Gloyne-Phillips, I.T. The role of riparian vegetation and woody debris in the development of macroinvertebrate assemblages in streams. River Res. Appl. 2005, 21, 403–420. [Google Scholar] [CrossRef]
- Cowie, N.M.; Moore, R.D.; Hassan, M.A. Effects of glacial retreat on proglacial streams and riparian zones in the Coast and North Cascade Mountains. Earth Surf. Process. Landf. 2014, 39, 351–365. [Google Scholar] [CrossRef]
- Milner, A.M.; Petts, G.E. Glacial rivers: Physical habitat and ecology. Freshwat. Biol. 1994, 32, 295–307. [Google Scholar] [CrossRef]
- Rott, E.; Cantonati, M.; Füreder, L.; Pfister, P. Benthic algae in high altitude streams of the Alps—A neglected component of the aquatic biota. Hydrobiologia 2006, 562, 195–216. [Google Scholar] [CrossRef]
- Uehlinger, U.; Robinson, C.T.; Hieber, M.; Zah, R. The physico-chemical habitat template for periphyton in alpine glacial streams under a changing climate. Hydrobiologia 2010, 657, 107–121. [Google Scholar] [CrossRef]
- Clitherow, L.R.; Carrivick, J.L.; Brown, L.E. Food web structure in a harsh glacier-fed river. PLoS ONE 2013, 8, e60899. [Google Scholar] [CrossRef]
- Brown, L.E.; Milner, A.M.; and Hannah, D.M. Groundwater influence on alpine stream ecosystems. Freshwat. Biol. 2007, 52, 878–890. [Google Scholar] [CrossRef]
- Brown, L.E.; Céréghino, R.; Compin, A. Endemic freshwater invertebrates from southern France: Diversity, distribution and conservation implications. Biol. Conserv. 2009, 142, 2613–2619. [Google Scholar] [CrossRef]
- Thompson, C.; David, E.; Freestone, M.; Robinson, C.T. Ecological patterns along two alpine glacial streams in the Fitzpatrick Wilderness, Wind River Range, USA. West. N. Am. Nat. 2013, 73, 137–147. [Google Scholar] [CrossRef]
- Alther, R.; Thompson, C.; Lods-Crozet, B.; Robinson, C.T. Macroinvertebrate diversity and rarity in non-glacial Alpine streams. Aquat. Sci. 2019, 81, 1–14. [Google Scholar] [CrossRef]
- Milner, A.M.; Brittain, J.E.; Castella, E.; Petts, G.E. Trends of macroinvertebrate community structure in glacier-fed rivers in relation to environmental conditions: A synthesis. Freshwat. Biol. 2001, 46, 1833–1847. [Google Scholar] [CrossRef]
- Gao, W.; Gao, S.; Li, Z.; Lu, X.X.; Zhang, M.; Wang, S. Suspended sediment and total dissolved solid yield patterns at the headwaters of Urumqi River, northwestern China: A comparison between glacial and non-glacial catchments. Hydrol. Process. 2014, 28, 5034–5047. [Google Scholar] [CrossRef]
- Lencioni, V.; Barcelo, D. Glacial influence and stream macroinvertebrate biodiversity under climate change: Lessons from the Southern Alps. Sci. Total Environ. 2017, 622, 563–575. [Google Scholar] [CrossRef] [PubMed]
- Füreder, L.; Niedrist, G.H. Glacial stream ecology: Structural and functional assets. Water 2020, 12, 376. [Google Scholar] [CrossRef]
- Jacobsen, D.; Cauvy-Fraunie, S.; Andino, P.; Espinosa, R.; Cueva, D.; Dangles, O. Runoff and the longitudinal distribution of macroinvertebrates in a glacier-fed stream: Implications for the effects of global warming. Freshwat. Biol. 2014, 59, 2038–2050. [Google Scholar] [CrossRef]
- Cauvy-Fraunié, S.; Espinosa, R.; Andino, P.; Jacobsen, D.; Dangles, O. Invertebrate metacommunity structure and dynamics in an Andean glacial stream network facing climate change. PLoS ONE 2015, 10, e0136793. [Google Scholar] [CrossRef]
- Zimmer, A.; Meneses, R.I.; Rabatel, A.; Soruco, A.; Dangles, O.; Anthelme, F. Time lag between glacial retreat and upward migration alters tropical alpine communities. Perspect. Pl. Ecol. Evol. Syst. 2018, 30, 89–102. [Google Scholar] [CrossRef]
- Giersch, J.J.; Hotaling, S.; Kovach, R.P.; Jones, L.A.; Muhlfeld, C.C. Climate-induced glacier and snow loss imperils alpine stream insects. Glob. Change Biol. 2017, 23, 2577–2589. [Google Scholar] [CrossRef]
- Hotaling, S.; Shah, A.A.; McGowan, K.L.; Tronstad, L.M.; Giersch, J.J.; Finn, D.S.; Woods, H.A.; Dillon, M.E.; Kelley, J.L. Mountain stoneflies may tolerate warming streams: Evidence from organismal physiology and gene expression. Glob. Change Biol. 2020, 26, 5524–5538. [Google Scholar] [CrossRef]
- Brighenti, S.; Tolotti, M.; Bertoldi, W.; Wharton, G.; Bruno, M.C. Rock glaciers and paraglacial features influence stream invertebrates in a deglaciating Alpine area. Freshwat. Biol. 2021, 66, 535–548. [Google Scholar] [CrossRef]
- Niedrist, G.H.; Füreder, L. Towards a definition of environmental niches in alpine streams by employing chironomid species preferences. Hydrobiologia 2016, 781, 143–160. [Google Scholar] [CrossRef]
- Sertić Perić, M.; Nielsen, J.M.; Schubert, C.J.; Robinson, C.T. Does rapid glacial recession affect feeding habits of alpine stream insects? Freshwat. Biol. 2021, 66, 114–129. [Google Scholar] [CrossRef]
- Niedrist, G.H.; Füreder, L. Real-time warming of Alpine streams: (re)defining invertebrates’ temperature preferences. River Res. Appl. 2021, 37, 283–293. [Google Scholar] [CrossRef]
- Llg, C.; Castella, E. Patterns of macroinvertebrate traits along three glacial stream continuums. Freshwat. Biol. 2006, 51, 840–853. [Google Scholar]
- Lencioni, V.; Franceschini, A.; Paoli, F.; Debiasi, D. Structural and functional changes in the macroinvertebrate community in Alpine stream networks fed by shrinking glaciers. Fundam. Appl. Limnol. 2021, 194, 237–258. [Google Scholar] [CrossRef]
- Chaves, M.L.; Rieradevall, M.; Chainho, P.; Costa, J.L.; Costa, M.J.; Prat, N. Macroinvertebrate communities of non-glacial high altitude intermittent streams. Freshwat. Biol. 2008, 53, 55–76. [Google Scholar] [CrossRef]
- di Cugno, N.; Robinson, C.T. Trophic structure of macroinvertebrates in alpine non-glacial streams. Fundam. Appl. Limnol. 2017, 190, 319–330. [Google Scholar] [CrossRef]
- Fenoglio, S.; Bo, T.; Cammarata, M.; López-Rodríguez, M.J.; Tierno De Figueroa, J.M. Seasonal variation of allochthonous and autochthonous energy inputs in an Alpine stream. J. Limnol. 2015, 74, 272–277. [Google Scholar] [CrossRef]
- Doretto, A.; Bona, F.; Falasco, E.; Morandini, D.; Piano, E.; Fenoglio, S. Stay with the flow: How macroinvertebrate communities recover during the rewetting phase in Alpine streams affected by an exceptional drought. River Res. Appl. 2019, 36, 91–101. [Google Scholar] [CrossRef]
- Leppi, J.C.; DeLuca, T.H.; Harrar, S.W.; Running, S.W. Impacts of climate change on August stream discharge in the Central-Rocky Mountains. Clim. Change 2012, 112, 997–1014. [Google Scholar] [CrossRef]
- Füreder, L.; Vacha, C.; Amprosi, K.; Bühler, S.; Hansen, C.M.E.; Moritz, C. Reference conditions of alpine streams: Phyisical habitat and ecology. Water Air Soil Pollut. 2002, 2, 275–294. [Google Scholar] [CrossRef]
- Huss, M.; Bookhagen, B.; Huggel, C.; Jacobsen, D.; Bradley, R.S.; Clague, J.J.; Vuille, M.; Buytaert, W.; Cayan, D.R.; Greenwood, G.; et al. Toward mountains without permanent snow and ice. Earth’s Future 2017, 5, 418–435. [Google Scholar] [CrossRef]
- Kottek, M.; Grieser, J.; Beck, C.; Rudolf, B.; Rubel, F. World map of the Köppen-Geiger climate classification updated. Meteorol. Z. 2006, 5, 259–263. [Google Scholar] [CrossRef] [PubMed]
- Gore, J.A.; Banning, J. Discharge Measurements and Streamflow Analysis. In Methods in Stream Ecology, 3rd ed.; Hauer, F.R., Lamberti, G.A., Eds.; Academic Press: Cambridge, MA, USA, 2017; Volume 1, pp. 49–70. [Google Scholar]
- Merritt, R.W.; Cummins, K.W.; Berg, M.B. (Eds.) An Introduction to the Aquatic Insects of North America, 5th ed.; Kendall-Hunt Publishing Company: Dubuque, IA, USA, 2019. [Google Scholar]
- Thorp, A.H.; Covich, A.P. (Eds.) Ecology and Classification of North American Freshwater Invertebrates, 3rd ed.; Elsevier: Amsterdam, The Netherlands, 2009. [Google Scholar]
- Team, R.C. R: A Language and Environment for Statistical Computing; R Foundation for Statistical Computing: Vienna, Austria, 2021. [Google Scholar]
- Wellnitz, T. How do stream grazers partition their benthic habitat? Hydrobiologia 2015, 760, 197–204. [Google Scholar] [CrossRef]
- Harms, T.K.; Edmonds, J.W.; Genet, H.; Creed, I.F.; Aldred, D.; Balser, A.; Jones, J.B. Catchment influence on nitrate and dissolved organic matter in Alaskan streams across a latitudinal gradient. J. Geophys. Res. Biogeosci. 2016, 121, 350–369. [Google Scholar] [CrossRef]
- Musolffa, A.; Fleckenstein, J.H.; Opitz, M.; Büttner, O.; Kumar, R.; Tittel, J. Spatio-temporal controls of dissolved organic carbon stream water concentrations. J. Hydrol. 2018, 566, 205–215. [Google Scholar] [CrossRef]
- Kiffney, P.M.; Richardson, J.S.; Feller, M.C. Fluvial and epilithic organic matter dynamics in headwater streams of southwestern British Columbia, Canada. Arch. Hydrobiol. 2000, 149, 109–129. [Google Scholar] [CrossRef]
- Cui, Y.; Miller, D.; Schiarizza, P.; Diakow, L.J. British Columbia digital geology. In British Columbia Ministry of Energy, Mines and Petroleum Resources, British Columbia Geological Survey Open File 2017-8; British Columbia Geological Survey (BCGS): Victoria, BC, Canada, 2017; pp. 1–9. [Google Scholar]
- Muhlfeld, C.C.; Cline, T.J.; Joseph Giersch, J.J.; Peitzsch, E.; Florentine, C.; Jacobsen, D.; Hotaling, S. Specialized meltwater biodiversity persists despite widespread deglaciation. Proc. Nat. Acad. Sci. USA 2020, 117, 12208–12214. [Google Scholar] [CrossRef]
- Dodds, W.K.; Marra, J.L. Behaviors of the midge, Cricotopus (Diptera: Chironomidae) related to mutualism with Nostoc parmelioides (Cyanobacteria). Aquat. Insects 1989, 4, 201–208. [Google Scholar] [CrossRef]
- Muotka, T.; Syrjänen, J. Changes in habitat structure, benthic invertebrate diversity, trout populations and ecosystem processes in restored forest streams: A boreal perspective. Freshwat. Biol. 2007, 52, 724–737. [Google Scholar] [CrossRef]
- Fritz, K.M.; Glime, J.M.; Hribljan, J.; Greenwood, J.L. Can bryophytes be used to characterize hydrologic permanence in forested headwater streams? Ecol. Indicat. 2009, 9, 681–692. [Google Scholar] [CrossRef]
- Malmqvist, B.; Hoffsten, P.-O. Macroinvertebrate taxonomic richness, community structure and nestedness in Swedish streams. Arch. Hydrobiol. 2000, 150, 29–54. [Google Scholar] [CrossRef]
- Danehy, R.J.; Chan, S.S.; Lester, G.T.; Langshaw, R.B.; Turner, T.R. Periphyton and macroinvertebrate assemblage structure in headwaters bordered by mature, thinned, and clearcut Douglas-fir stands. For. Sci. 2007, 53, 294–307. [Google Scholar] [CrossRef]
- Brown, L.E.; Hannah, D.M.; Milner, A.M. Vulnerability of alpine stream biodiversity to shrinking glaciers and snowpacks. Glob. Change Biol. 2007, 13, 958–966. [Google Scholar] [CrossRef]
- Finn, D.S.; Khamis, K.; Milner, A.M. Loss of small glaciers will diminish beta diversity in Pyrenean streams at two levels of biological organization. Glob. Ecol. Biogeogr. 2013, 22, 40–51. [Google Scholar] [CrossRef]
- Green, M.D.; Anderson, K.E.; Herbst, D.B.; Spasojevic, M.J. Rethinking biodiversity patterns and processes in stream ecosystems. Ecol. Monogr. 2022, 92, e1520. [Google Scholar] [CrossRef]
- Heino, J.; Melo, A.S.; Bini, L.M.; Altermatt, F.; Al-Shami, S.A.; Angeler, D.G.; Bonada, M.; Brand, C.; Callisto, M.; Cottenie, K.; et al. A comparative analysis reveals weak relationships between ecological factors and beta diversity of stream insect metacommunities at two spatial levels. Ecol. Evol. 2015, 5, 1235–1248. [Google Scholar] [CrossRef]
- Bonacina, L.; Eme, E.; Fornaroli, R.; Lamouroux, N.; Cauvy-Fraunié, S. Spatiotemporal patterns of macroinvertebrate assemblages across mountain streams with contrasting thermal regimes. Freshwat. Sci. 2023, 42, 392–408. [Google Scholar] [CrossRef]
Site | Catchment Area (ha) | Stream Slope (%) | Conductivity (µS/cm) | pH | Bankfull Width (m) | Velocity (m/s) | Chloride (mg/L) | Sulphate (mg/L) | DOC (mg/L) |
---|---|---|---|---|---|---|---|---|---|
BW1 | 0.26 | 1.5 | 28.6 | 7.7 | 2.54 | 0.44 | 0.012 | 2.8 | 0.46 |
BW2 | 0.91 | 4.5 | 8 | 7.46 | 4.03 | 0.70 | 0.015 | 0.68 | 0.32 |
BW3 | 1.1 | 11.5 | 3 | 6.74 | 4.38 | 0.50 | 0.021 | 0.6 | 0.32 |
BW4 | 3.74 | 1 | 6.3 | 7.28 | 7.35 | 0.60 | 0.02 | 0.99 | 0.43 |
BW5 | 0.25 | 5.5 | 265 | 9.2 | 1.38 | 0.30 | 0.038 | 2.7 | 0.83 |
BW6 | 0.1 | 31.5 | 94 | 7.91 | 0.78 | 0.15 | 0.039 | 0.67 | 5.5 |
BW7 | 0.22 | 14 | 9.7 | 7.86 | 1.46 | 0.16 | 0.056 | 0.55 | 1.6 |
BW8 | 0.34 | 20.75 | 14.5 | 7.2 | 1.33 | 0.15 | 0.037 | 2.9 | 0.89 |
BW9 | 0.35 | 17 | 18.2 | 7.28 | 2.45 | 0.33 | 0.026 | 3.3 | 0.63 |
Slope | Catchment Area | Elevation | pH | Conductivity | Bankfull Width | Velocity | Depth | Chloride | Sulphate | |
---|---|---|---|---|---|---|---|---|---|---|
Catchment Area | 0.18 | |||||||||
Elevation | 0.62 | 0.44 | ||||||||
pH | 0.82 | 0.37 | 0.16 | |||||||
Conductivity | 0.99 | 0.44 | 0.47 | <0.01 | ||||||
Bankfull Width | 0.07 | <0.01 | 0.8 | 0.19 | 0.26 | |||||
Velocity | 0.02 | 0.08 | 0.82 | 0.4 | 0.47 | 0.01 | ||||
Depth | 0.03 | 0.18 | 0.6 | 0.91 | 0.77 | 0.06 | 0.02 | |||
Chloride | 0.12 | 0.3 | 0.63 | 0.27 | 0.45 | 0.08 | 0.01 | 0.15 | ||
Sulphate | 0.87 | 0.39 | 0.94 | 0.58 | 0.47 | 0.38 | 0.51 | 0.42 | 0.75 | |
DOC | 0.01 | 0.4 | 0.46 | 0.53 | 0.57 | 0.17 | 0.1 | 0.13 | 0.2 | 0.41 |
Site | Taxon Richness | % EPT Taxa | % Diptera Taxa | % Shredders | % Collectors | % Scrapers | % Predators |
---|---|---|---|---|---|---|---|
BW1 | 34 | 61.1 | 22.9 | 7.4 | 34.6 | 8.9 | 28.1 |
BW2 | 36 | 73.8 | 23.1 | 34.2 | 24.9 | 31.2 | 18.1 |
BW3 | 45 | 51.5 | 44.3 | 17.9 | 33.4 | 28.9 | 4.0 |
BW4 | 39 | 72.2 | 24.9 | 14.7 | 28.6 | 36.0 | 10.3 |
BW5 | 42 | 25.3 | 58.4 | 23.7 | 32.6 | 6.1 | 14.4 |
BW6 | 30 | 11.8 | 16.7 | 1.5 | 11.2 | 7.2 | 6.1 |
BW7 | 39 | 61.3 | 14.2 | 12.8 | 33.3 | 7.7 | 18.7 |
BW8 | 35 | 34.6 | 49.4 | 21.8 | 27.6 | 14.7 | 13.0 |
BW9 | 36 | 74.7 | 20.6 | 26.1 | 31.1 | 15.7 | 15.7 |
BW1 | BW2 | BW3 | BW4 | BW5 | BW6 | BW7 | BW8 | |
---|---|---|---|---|---|---|---|---|
BW2 | 0.86 | |||||||
BW3 | 0.87 | 0.62 | ||||||
BW4 | 0.68 | 0.43 | 0.67 | |||||
BW5 | 0.75 | 0.85 | 0.68 | 0.71 | ||||
BW6 | 0.80 | 0.91 | 0.83 | 0.83 | 0.78 | |||
BW7 | 0.56 | 0.81 | 0.73 | 0.68 | 0.59 | 0.69 | ||
BW8 | 0.64 | 0.82 | 0.63 | 0.59 | 0.46 | 0.73 | 0.53 | |
BW9 | 0.51 | 0.72 | 0.78 | 0.51 | 0.73 | 0.85 | 0.50 | 0.55 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sherrin, S.; Shcherbakova, Y.; Richardson, J.S. Macroinvertebrate Communities of Non-Glacial Alpine Streams in Western North America’s Coast Mountains. Limnol. Rev. 2025, 25, 38. https://doi.org/10.3390/limnolrev25030038
Sherrin S, Shcherbakova Y, Richardson JS. Macroinvertebrate Communities of Non-Glacial Alpine Streams in Western North America’s Coast Mountains. Limnological Review. 2025; 25(3):38. https://doi.org/10.3390/limnolrev25030038
Chicago/Turabian StyleSherrin, Sabine, Yulia Shcherbakova, and John S. Richardson. 2025. "Macroinvertebrate Communities of Non-Glacial Alpine Streams in Western North America’s Coast Mountains" Limnological Review 25, no. 3: 38. https://doi.org/10.3390/limnolrev25030038
APA StyleSherrin, S., Shcherbakova, Y., & Richardson, J. S. (2025). Macroinvertebrate Communities of Non-Glacial Alpine Streams in Western North America’s Coast Mountains. Limnological Review, 25(3), 38. https://doi.org/10.3390/limnolrev25030038