Water Monitoring Practices 2.0—Water Fleas as Key Species in Ecotoxicology and Risk Assessment
Abstract
1. Introduction to the Challenges and Consequences of Freshwater Pollution
2. Revolutionizing Risk Assessment with Novel Approach Methodologies
2.1. Limitations of the Current Approaches in Risk Assessment
2.2. The Shift Towards Effect-Based Methods in Risk Assessment
2.3. Adverse Outcome Pathways (AOPs) Are Key Components in Risk Assessment
2.4. Advances in Risk Assessment with New Approach Methodologies (NAMs)
3. Water Fleas as Key Species in Risk Assessment
3.1. Molecular Perturbations in Response to Pharmaceuticals
3.1.1. Antibiotics
3.1.2. Antiepileptics
3.1.3. Antidepressants
3.1.4. Antidiabetics
3.1.5. Non-Steroidal Anti-Inflammatory Drugs (NSAIDs)
3.1.6. Beta-Blockers
3.2. Molecular Perturbations in Response to Nanomaterials
3.2.1. Carbon Nanomaterials
3.2.2. Metal Oxide-Based Nanoparticles (MNPs)
4. Translation of Molecular Findings to New Metrics for the Early Prediction of Pollution
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Conflicts of Interest
References
- European Commission. Global Pollution Kills 9 Million People a Year. 2018. Available online: https://ec.europa.eu/newsroom/intpa/items/612355/en (accessed on 26 February 2025).
- Lin, L.; Yang, H.; Xu, X. Effects of Water Pollution on Human Health and Disease Heterogeneity: A Review. Front. Environ. Sci. 2022, 10, 880246. [Google Scholar] [CrossRef]
- Jiang, T.; Wu, W.; Ma, M.; Hu, Y.; Li, R. Occurrence and distribution of emerging contaminants in wastewater treatment plants: A globally review over the past two decades. Sci. Total Environ. 2024, 951, 175664. [Google Scholar] [CrossRef] [PubMed]
- Das, S.; Parida, V.K.; Tiwary, C.S.; Gupta, A.K.; Chowdhury, S. Emerging Contaminants in the Aquatic Environment: Fate, Occurrence, Impacts, and Toxicity. In Bioremediation of Emerging Contaminants in Water. Volume 1; American Chemical Society: Washington, DC, USA, 2024; pp. 1–32. [Google Scholar]
- Li, B.; Xu, D.; Zhou, X.; Yin, Y.; Feng, L.; Liu, Y.; Zhang, L. Environmental behaviors of emerging contaminants in freshwater ecosystem dominated by submerged plants: A review. Environ. Res. 2023, 227, 115709. [Google Scholar] [CrossRef] [PubMed]
- Kumawat, M.; Sharma, P.; Pal, N.; James, M.M.; Verma, V.; Tiwari, R.R.; Shubham, S.; Sarma, D.K.; Kumar, M. Occurrence and seasonal disparity of emerging endocrine disrupting chemicals in a drinking water supply system and associated health risk. Sci. Rep. 2022, 12, 9252. [Google Scholar] [CrossRef]
- Oehlmann, J.; Schulte-Oehlmann, U.; Kloas, W.; Jagnytsch, O.; Lutz, I.; Kusk, K.O.; Wollenberger, L.; Santos, E.M.; Paull, G.C.; Van Look, K.J.; et al. A critical analysis of the biological impacts of plasticizers on wildlife. Philos. Trans. R. Soc. Lond. B Biol. Sci. 2009, 364, 2047–2062. [Google Scholar] [CrossRef]
- Ghafarifarsani, H.; Raeeszadeh, M.; Hajirezaee, S.; Ghafari Farsani, S.; Mansouri Chorehi, M. The Effect of Malathion Concentration and Exposure Time on Histopathological Changes in the Liver and Gill of Rainbow Trout. Aquac. Res. 2023, 2023, 3396066. [Google Scholar] [CrossRef]
- Tang, J.; Yang, J.; Zhao, S.; Wang, X.; Xie, Z. Toxic Effects of Tetracycline and Its Removal by the Freshwater Microalga Chlorella pyrenoidosa. Agronomy 2022, 12, 2497. [Google Scholar] [CrossRef]
- Maghsodian, Z.; Sanati, A.M.; Mashifana, T.; Sillanpää, M.; Feng, S.; Nhat, T.; Ramavandi, B. Occurrence and Distribution of Antibiotics in the Water, Sediment, and Biota of Freshwater and Marine Environments: A Review. Antibiotics 2022, 11, 1461. [Google Scholar] [CrossRef]
- Li, D.; Chen, H.; Liu, H.; Schlenk, D.; Mu, J.; Lacorte, S.; Ying, G.-G.; Xie, L. Anticancer drugs in the aquatic ecosystem: Environmental occurrence, ecotoxicological effect and risk assessment. Environ. Int. 2021, 153, 106543. [Google Scholar] [CrossRef]
- Poirier Larabie, S.; Jutras, M.; Leclair, G.; St-Jean, I.; Kleinert, C.; Gagné, F.; Gagnon, C. Evaluation of uptake of the cytostatic methotrexate in Elliptio complanata mussels by LC-MS/MS. Environ. Sci. Pollut. Res. Int. 2022, 29, 45303–45313. [Google Scholar] [CrossRef]
- Singh, A.; Saidulu, D.; Gupta, A.K.; Kubsad, V. Occurrence and fate of antidepressants in the aquatic environment: Insights into toxicological effects on the aquatic life, analytical methods, and removal techniques. J. Environ. Chem. Eng. 2022, 10, 109012. [Google Scholar] [CrossRef]
- Fekadu, S.; Alemayehu, E.; Dewil, R.; Van der Bruggen, B. Pharmaceuticals in freshwater aquatic environments: A comparison of the African and European challenge. Sci. Total Environ. 2019, 654, 324–337. [Google Scholar] [CrossRef] [PubMed]
- Littlejohn, C.; Renaud, J.B.; Sabourin, L.; Lapen, D.R.; Pappas, J.J.; Tuteja, B.; Hughes, D.; Ussery, E.; Yeung, K.K.-C.; Sumarah, M.W. Environmental Concentrations of the Type 2 Diabetes Medication Metformin and Its Transformation Product Guanylurea in Surface Water and Sediment in Ontario and Quebec, Canada. Environ. Toxicol. Chem. 2023, 42, 1709–1720. [Google Scholar] [CrossRef]
- Cardoso-Vera, J.D.; Elizalde-Velázquez, G.A.; Islas-Flores, H.; Mejía-García, A.; Ortega-Olvera, J.M.; Gómez-Oliván, L.M. A review of antiepileptic drugs: Part 1 occurrence, fate in aquatic environments and removal during different treatment technologies. Sci. Total Environ. 2021, 768, 145487. [Google Scholar] [CrossRef]
- Yi, M.; Sheng, Q.; Sui, Q.; Lu, H. β-blockers in the environment: Distribution, transformation, and ecotoxicity. Environ. Pollut. 2020, 266, 115269. [Google Scholar] [CrossRef]
- Jiménez, J.J.; Sánchez, M.I.; Pardo, R.; Muñoz, B.E. Degradation of indomethacin in river water under stress and non-stress laboratory conditions: Degradation products, long-term evolution and adsorption to sediment. J. Environ. Sci. 2017, 51, 13–20. [Google Scholar] [CrossRef]
- Rastogi, A.; Tiwari, M.K.; Ghangrekar, M.M. A review on environmental occurrence, toxicity and microbial degradation of Non-Steroidal Anti-Inflammatory Drugs (NSAIDs). J. Environ. Manag. 2021, 300, 113694. [Google Scholar] [CrossRef]
- Hernández-Tenorio, R.; González-Juárez, E.; Guzmán-Mar, J.L.; Hinojosa-Reyes, L.; Hernández-Ramírez, A. Review of occurrence of pharmaceuticals worldwide for estimating concentration ranges in aquatic environments at the end of the last decade. J. Hazard. Mater. Adv. 2022, 8, 100172. [Google Scholar] [CrossRef]
- Mohagheghian, A.; Nabizadeh, R.; Mesdghinia, A.; Rastkari, N.; Mahvi, A.H.; Alimohammadi, M.; Yunesian, M.; Ahmadkhaniha, R.; Nazmara, S. Distribution of estrogenic steroids in municipal wastewater treatment plants in Tehran, Iran. J. Environ. Health Sci. Eng. 2014, 12, 97. [Google Scholar] [CrossRef]
- Tang, Z.; Liu, Z.-H.; Wang, H.; Dang, Z.; Yin, H.; Zhou, Y.; Liu, Y. Trace determination of eleven natural estrogens and insights from their occurrence in a municipal wastewater treatment plant and river water. Water Res. 2020, 182, 115976. [Google Scholar] [CrossRef]
- Grzegorzek, M.; Wartalska, K.; Kowalik, R. Occurrence and sources of hormones in water resources-environmental and health impact. Environ. Sci. Pollut. Res. Int. 2024, 31, 37907–37922. [Google Scholar] [CrossRef] [PubMed]
- Bashir, I.; Lone, F.A.; Bhat, R.A.; Mir, S.A.; Dar, Z.A.; Dar, S.A. Concerns and Threats of Contamination on Aquatic Ecosystems. In Bioremediation and Biotechnology; Springer: Cham, Switzerland, 2020; pp. 1–26. [Google Scholar] [CrossRef]
- Bilalova, S.; Newig, J.; Tremblay-Lévesque, L.-C.; Roux, J.; Herron, C.; Crane, S. Pathways to water sustainability? A global study assessing the benefits of integrated water resources management. J. Environ. Manag. 2023, 343, 118179. [Google Scholar] [CrossRef] [PubMed]
- Piczak, M.L.; Perry, D.; Cooke, S.J.; Harrison, I.; Benitez, S.; Koning, A.; Peng, L.; Limbu, P.; Smokorowski, K.E.; Salinas-Rodriguez, S.; et al. Protecting and restoring habitats to benefit freshwater biodiversity. Environ. Rev. 2024, 32, 438–456. [Google Scholar] [CrossRef]
- Wagner, M.; Scherer, C.; Alvarez-Muñoz, D.; Brennholt, N.; Bourrain, X.; Buchinger, S.; Fries, E.; Grosbois, C.; Klasmeier, J.; Marti, T.; et al. Microplastics in freshwater ecosystems: What we know and what we need to know. Environ. Sci. Eur. 2014, 26, 12. [Google Scholar] [CrossRef]
- Neale, P.A.; Escher, B.I.; de Baat, M.L.; Dechesne, M.; Deere, D.A.; Enault, J.; Kools, S.A.E.; Loret, J.-F.; Smeets, P.W.M.H.; Leusch, F.D.L. Effect-based monitoring to integrate the mixture hazards of chemicals into water safety plans. J. Water Health 2022, 20, 1721–1732. [Google Scholar] [CrossRef]
- Regulation (EC) No 1907/2006 of the European Parliament and of the Council of 18 December 2006 Concerning the Registration, Evaluation, Authorisation and Restriction of Chemicals (REACH); EU: Brussels, Belgium, 2006; L 396, pp. 1–849.
- Schmeisser, S.; Miccoli, A.; von Bergen, M.; Berggren, E.; Braeuning, A.; Busch, W.; Desaintes, C.; Gourmelon, A.; Grafström, R.; Harrill, J.; et al. New approach methodologies in human regulatory toxicology—Not if, but how and when! Environ. Int. 2023, 178, 108082. [Google Scholar] [CrossRef]
- Leusch, F.D.L.; Allen, H.; De Silva, N.A.L.; Hodson, R.; Johnson, M.; Neale, P.A.; Stewart, M.; Tremblay, L.A.; Wilde, T.; Northcott, G.L. Effect-based monitoring of two rivers under urban and agricultural influence reveals a range of biological activities in sediment and water extracts. J. Environ. Manag. 2024, 351, 119692. [Google Scholar] [CrossRef]
- Committee, E.S.; More, S.J.; Bampidis, V.; Benford, D.; Bragard, C.; Hernandez-Jerez, A.; Bennekou, S.H.; Halldorsson, T.I.; Koutsoumanis, K.P.; Lambré, C.; et al. Guidance Document on Scientific criteria for grouping chemicals into assessment groups for human risk assessment of combined exposure to multiple chemicals. EFSA J. 2021, 19, e07033. [Google Scholar] [CrossRef]
- Falfushynska, H.; Dellwig, O.; Köhler, A.; Sokolova, I.M. Adverse outcome pathways as a tool for optimization of the biomarker-based assessment of pollutant toxicity: A case study of cadmium in the blue mussels Mytilus edulis. Ecol. Indic. 2024, 158, 111431. [Google Scholar] [CrossRef]
- Medlock Kakaley, E.; Cardon, M.C.; Evans, N.; Iwanowicz, L.R.; Allen, J.M.; Wagner, E.; Bokenkamp, K.; Richardson, S.D.; Plewa, M.J.; Bradley, P.M.; et al. In vitro effects-based method and water quality screening model for use in pre- and post-distribution treated waters. Sci. Total Environ. 2021, 768, 144750. [Google Scholar] [CrossRef]
- Edwards, S.W.; Tan, Y.-M.; Villeneuve, D.L.; Meek, M.E.; McQueen, C.A. Adverse Outcome Pathways–Organizing Toxicological Information to Improve Decision Making. J. Pharmacol. Exp. Ther. 2016, 356, 170–181. [Google Scholar] [CrossRef] [PubMed]
- Razak, M.R.; Wee, S.Y.; Yusoff, F.M.; Yusof, Z.N.B.; Aris, A.Z. Zooplankton-based adverse outcome pathways: A tool for assessing endocrine disrupting compounds in aquatic environments. Environ. Res. 2024, 252, 119045. [Google Scholar] [CrossRef] [PubMed]
- Mehinto, A.C.; Brander, S.M.; Siddiqui, S. Adverse Outcome Pathways and Their Relevance. In Aquatic Ecotoxicology: Understanding Pollutants, Aquatic Organisms, and their Environments; Siddiqui, S., Brander, S.M., Eds.; Springer International Publishing: Cham, Switzerland, 2024; pp. 139–145. [Google Scholar] [CrossRef]
- Sewell, F.; Alexander-White, C.; Brescia, S.; Currie, R.A.; Roberts, R.; Roper, C.; Vickers, C.; Westmoreland, C.; Kimber, I. New approach methodologies (NAMs): Identifying and overcoming hurdles to accelerated adoption. Toxicol. Res. 2024, 13, tfae044. [Google Scholar] [CrossRef] [PubMed]
- Stucki, A.O.; Barton-Maclaren, T.S.; Bhuller, Y.; Henriquez, J.E.; Henry, T.R.; Hirn, C.; Miller-Holt, J.; Nagy, E.G.; Perron, M.M.; Ratzlaff, D.E.; et al. Use of new approach methodologies (NAMs) to meet regulatory requirements for the assessment of industrial chemicals and pesticides for effects on human health. Front. Toxicol. 2022, 4, 964553. [Google Scholar] [CrossRef]
- Mitchell, C.A.; Burden, N.; Bonnell, M.; Hecker, M.; Hutchinson, T.H.; Jagla, M.; LaLone, C.A.; Lagadic, L.; Lynn, S.G.; Shore, B.; et al. New Approach Methodologies for the Endocrine Activity Toolbox: Environmental Assessment for Fish and Amphibians. Environ. Toxicol. Chem. 2023, 42, 757–777. [Google Scholar] [CrossRef]
- Rowan, E.; Leung, A.; O’Rourke, K.; Grintzalis, K. New Approach Methodologies: Physiological Responses of Daphnids to Pharmaceutical Mixtures. Proceedings 2024, 102, 46. [Google Scholar] [CrossRef]
- Manful, M.E.; Ahmed, L.; Barry-Ryan, C. New Approach Methodologies (NAMs) for safety testing of complex food matrices: A review of status, considerations, and regulatory adoption. Trends Food Sci. Technol. 2023, 142, 104191. [Google Scholar] [CrossRef]
- Reilly, K.; Ellis, L.-J.A.; Davoudi, H.H.; Supian, S.; Maia, M.T.; Silva, G.H.; Guo, Z.; Martinez, D.S.T.; Lynch, I. Daphnia as a model organism to probe biological responses to nanomaterials—From individual to population effects via adverse outcome pathways. Front. Toxicol. 2023, 5, 1178482. [Google Scholar] [CrossRef]
- Miner, B.E.; De Meester, L.; Pfrender, M.E.; Lampert, W.; Hairston, N.G., Jr. Linking genes to communities and ecosystems: Daphnia as an ecogenomic model. Proc. Biol. Sci. 2012, 279, 1873–1882. [Google Scholar] [CrossRef]
- Le, Q.-A.V.; Sekhon, S.S.; Lee, L.; Ko, J.H.; Min, J. Daphnia in water quality biomonitoring—“omic” approaches. Toxicol. Environ. Health Sci. 2016, 8, 1–6. [Google Scholar] [CrossRef]
- OECD. Test No. 202: Daphnia sp. Acute Immobilisation Test; OECD: Paris, France, 2004. [Google Scholar] [CrossRef]
- OECD. Test No. 211: Daphnia magna Reproduction Test; OECD: Paris, France, 2012. [Google Scholar] [CrossRef]
- Kock, A.; Glanville, H.C.; Law, A.C.; Stanton, T.; Carter, L.J.; Taylor, J.C. Emerging challenges of the impacts of pharmaceuticals on aquatic ecosystems: A diatom perspective. Sci. Total Environ. 2023, 878, 162939. [Google Scholar] [CrossRef] [PubMed]
- Hejna, M.; Kapuścińska, D.; Aksmann, A. Pharmaceuticals in the Aquatic Environment: A Review on Eco-Toxicology and the Remediation Potential of Algae. Int. J. Environ. Res. Public Health 2022, 19, 7717. [Google Scholar] [CrossRef] [PubMed]
- Flaherty, C.M.; Dodson, S.I. Effects of pharmaceuticals on Daphnia survival, growth, and reproduction. Chemosphere 2005, 61, 200–207. [Google Scholar] [CrossRef] [PubMed]
- Cooper, R.O.; Vavra, J.M.; Cressler, C.E. Targeted Manipulation of Abundant and Rare Taxa in the Daphnia magna Microbiota with Antibiotics Impacts Host Fitness Differentially. mSystems 2021, 6, 10–1128. [Google Scholar] [CrossRef]
- Akbar, S.; Gu, L.; Sun, Y.; Zhou, Q.; Zhang, L.; Lyu, K.; Huang, Y.; Yang, Z. Changes in the life history traits of Daphnia magna are associated with the gut microbiota composition shaped by diet and antibiotics. Sci. Total Environ. 2020, 705, 135827. [Google Scholar] [CrossRef]
- Motiei, A.; Brindefalk, B.; Ogonowski, M.; El-Shehawy, R.; Pastuszek, P.; Ek, K.; Liewenborg, B.; Udekwu, K.; Gorokhova, E. Disparate effects of antibiotic-induced microbiome change and enhanced fitness in Daphnia magna. PLoS ONE 2020, 15, e0214833. [Google Scholar] [CrossRef]
- Eckert, E.M.; Di Cesare, A.; Stenzel, B.; Fontaneto, D.; Corno, G. Daphnia as a refuge for an antibiotic resistance gene in an experimental freshwater community. Sci. Total Environ. 2016, 571, 77–81. [Google Scholar] [CrossRef]
- Chen, Y.-M.; Holmes, E.C.; Chen, X.; Tian, J.-H.; Lin, X.-D.; Qin, X.-C.; Gao, W.-H.; Liu, J.; Wu, Z.-D.; Zhang, Y.-Z. Diverse and abundant resistome in terrestrial and aquatic vertebrates revealed by transcriptional analysis. Sci. Rep. 2020, 10, 18870. [Google Scholar] [CrossRef]
- Thibodeau, A.J.; Barret, M.; Mouchet, F.; Nguyen, V.X.; Pinelli, E. The potential contribution of aquatic wildlife to antibiotic resistance dissemination in freshwater ecosystems: A review. Environ. Pollut. 2024, 350, 123894. [Google Scholar] [CrossRef]
- Ali, S.M.; Siddiqui, R.; Sagathevan, K.A.; Khan, N.A. Antibacterial activity of selected invertebrate species. Folia Microbiol. 2021, 66, 285–291. [Google Scholar] [CrossRef]
- Nkoom, M.; Lu, G.; Liu, J.; Yang, H.; Dong, H. Bioconcentration of the antiepileptic drug carbamazepine and its physiological and biochemical effects on Daphnia magna. Ecotoxicol. Environ. Saf. 2019, 172, 11–18. [Google Scholar] [CrossRef] [PubMed]
- Tian, Y.; Xia, X.; Wang, J.; Zhu, L.; Wang, J.; Zhang, F.; Ahmad, Z. Chronic Toxicological Effects of Carbamazepine on Daphnia magna Straus: Effects on Reproduction Traits, Body Length, and Intrinsic Growth. Bull. Environ. Contam. Toxicol. 2019, 103, 723–728. [Google Scholar] [CrossRef] [PubMed]
- O’Rourke, K.; Virgiliou, C.; Theodoridis, G.; Gika, H.; Grintzalis, K. The impact of pharmaceutical pollutants on daphnids—A metabolomic approach. Environ. Toxicol. Pharmacol. 2023, 100, 104157. [Google Scholar] [CrossRef] [PubMed]
- Machado, B.; Prudêncio, C.; Ferraz, R.; Barros, P. Chronic toxicity of valproic acid in Daphnia magna. Proc. Res. Pract. Allied Environ. Health 2023, 1, 22. [Google Scholar] [CrossRef]
- Dong, C.; Wang, L.; Barulin, N.; Alava, J.J.; Liu, S.; Xiong, D. Maternal Daphnia magna exposure to the antidepressant sertraline causes molting disorder, multi-generational reproductive and serotonergic dysfunction. Aquat. Toxicol. 2025, 278, 107161. [Google Scholar] [CrossRef]
- Minguez, L.; Ballandonne, C.; Rakotomalala, C.; Dubreule, C.; Kientz-Bouchart, V.; Halm-Lemeille, M.-P. Transgenerational Effects of Two Antidepressants (Sertraline and Venlafaxine) on Daphnia magna Life History Traits. Environ. Sci. Technol. 2015, 49, 1148–1155. [Google Scholar] [CrossRef]
- Campos, B.; Rivetti, C.; Kress, T.; Barata, C.; Dircksen, H. Depressing Antidepressant: Fluoxetine Affects Serotonin Neurons Causing Adverse Reproductive Responses in Daphnia magna. Environ. Sci. Technol. 2016, 50, 6000–6007. [Google Scholar] [CrossRef]
- Tominaga, F.K.; Boiani, N.F.; Silva, T.T.; Garcia, V.S.G.; Borrely, S.I. Acute and chronic ecotoxicological effects of pharmaceuticals and their mixtures in Daphnia similis. Chemosphere 2022, 309, 136671. [Google Scholar] [CrossRef]
- Markiewicz, M.; Jungnickel, C.; Stolte, S.; Białk-Bielińska, A.; Kumirska, J.; Mrozik, W. Ultimate biodegradability and ecotoxicity of orally administered antidiabetic drugs. J. Hazard. Mater. 2017, 333, 154–161. [Google Scholar] [CrossRef]
- Sheng, B.; Liu, J.; Li, G.H. Metformin preconditioning protects Daphnia pulex from lethal hypoxic insult involving AMPK, HIF and mTOR signaling. Comp. Biochem. Physiol. Part B Biochem. Mol. Biol. 2012, 163, 51–58. [Google Scholar] [CrossRef]
- Cho, Y.; Jonas-Closs, R.A.; Yampolsky, L.Y.; Kirschner, M.W.; Peshkin, L. Intelligent high-throughput intervention testing platform in Daphnia. Aging Cell 2022, 21, e13571. [Google Scholar] [CrossRef] [PubMed]
- Zheng, Y.; Shao, Y.; Zhang, Y.; Liu, Z.; Zhao, Z.; Xu, R.; Ding, J.; Li, W.; Wang, B.; Zhang, H. Metformin as an Emerging Pollutant in the Aquatic Environment: Occurrence, Analysis, and Toxicity. Toxics 2024, 12, 483. [Google Scholar] [CrossRef] [PubMed]
- Giannouli, M.; Panagiotidis, K.; Rochfort, K.D.; Grintzalis, K. Development and application of a sensitive feeding assay for daphnids based on the ingestion of fluorescent microparticles. Environ. Sci. Adv. 2023, 2, 1351–1359. [Google Scholar] [CrossRef]
- O’Rourke, K.; Engelmann, B.; Altenburger, R.; Rolle-Kampczyk, U.; Grintzalis, K. Molecular Responses of Daphnids to Chronic Exposures to Pharmaceuticals. Int. J. Mol. Sci. 2023, 24, 4100. [Google Scholar] [CrossRef]
- Izadi, P.; Izadi, P.; Salem, R.; Papry, S.A.; Magdouli, S.; Pulicharla, R.; Brar, S.K. Non-steroidal anti-inflammatory drugs in the environment: Where were we and how far we have come? Environ. Pollut. 2020, 267, 115370. [Google Scholar] [CrossRef]
- Michalaki, A.; Grintzalis, K. Acute and Transgenerational Effects of Non-Steroidal Anti-Inflammatory Drugs on Daphnia magna. Toxics 2023, 11, 320. [Google Scholar] [CrossRef]
- Tongur, S.; Yıldız, S. Toxicity tests using flurbiprofen, naproxen, propranolol, and carbamazepine on Lepidium sativum, Daphnia magna, and Aliivibrio fischeri. Desalination Water Treat. 2021, 221, 359–366. [Google Scholar] [CrossRef]
- Zhao, Y.; Hu, L.; Hou, Y.; Wang, Y.; Peng, Y.; Nie, X. Toxic effects of environmentally relevant concentrations of naproxen exposure on Daphnia magna including antioxidant system, development, and reproduction. Aquat. Toxicol. 2024, 266, 106794. [Google Scholar] [CrossRef]
- Du, J.; Mei, C.-F.; Ying, G.-G.; Xu, M.-Y. Toxicity Thresholds for Diclofenac, Acetaminophen and Ibuprofen in the Water Flea Daphnia magna. Bull. Environ. Contam. Toxicol. 2016, 97, 84–90. [Google Scholar] [CrossRef]
- Nkoom, M.; Lu, G.; Liu, J. Chronic toxicity of diclofenac, carbamazepine and their mixture to Daphnia magna: A comparative two-generational study. Environ. Sci. Pollut. Res. 2022, 29, 58963–58979. [Google Scholar] [CrossRef]
- Liu, Y.; Wang, L.; Pan, B.; Wang, C.; Bao, S.; Nie, X. Toxic effects of diclofenac on life history parameters and the expression of detoxification-related genes in Daphnia magna. Aquat. Toxicol. 2017, 183, 104–113. [Google Scholar] [CrossRef] [PubMed]
- Fuertes, I.; Piña, B.; Barata, C. Changes in lipid profiles in Daphnia magna individuals exposed to low environmental levels of neuroactive pharmaceuticals. Sci. Total Environ. 2020, 733, 139029. [Google Scholar] [CrossRef] [PubMed]
- Love, D.; Slovisky, M.; Costa, K.A.; Megarani, D.; Mehdi, Q.; Colombo, V.; Ivantsova, E.; Subramaniam, K.; Bowden, J.A.; Bisesi, J.H., Jr.; et al. Toxicity Risks Associated With the Beta-Blocker Metoprolol in Marine and Freshwater Organisms: A Review: Toxicity of metoprolol. Environ. Toxicol. Chem. 2024, 43, 2530–2544. [Google Scholar] [CrossRef]
- Godoy, A.A.; Oliveira, Á.C.d.; Silva, J.G.M.; Azevedo, C.C.d.J.; Domingues, I.; Nogueira, A.J.A.; Kummrow, F. Single and mixture toxicity of four pharmaceuticals of environmental concern to aquatic organisms, including a behavioral assessment. Chemosphere 2019, 235, 373–382. [Google Scholar] [CrossRef]
- McGillicuddy, E.; Murray, I.; Shevlin, D.; Morrison, L.; Cormican, M.; Fogarty, A.; Cummins, E.; Dockery, P.; Dunlop, P.; Rowan, N.; et al. Detection, Toxicology, Environmental Fate and Risk Assessment of Nanoparticles in the Aquatic Environment (DeTER); Environmental Protection Agency: Wexford, Ireland, 2018. [Google Scholar]
- Khan, I.; Saeed, K.; Khan, I. Nanoparticles: Properties, applications and toxicities. Arab. J. Chem. 2019, 12, 908–931. [Google Scholar] [CrossRef]
- Shrestha, S.; Wang, B.; Dutta, P. Nanoparticle processing: Understanding and controlling aggregation. Adv. Colloid Interface Sci. 2020, 279, 102162. [Google Scholar] [CrossRef]
- Ren, J.; Opoku, H.; Tang, S.; Edman, L.; Wang, J. Carbon Dots: A Review with Focus on Sustainability. Adv. Sci. 2024, 11, 2405472. [Google Scholar] [CrossRef]
- Ma, Y.; Liu, Y.; Chen, W.; Li, F.; Guo, R.; Ji, R.; Chen, J. Carbon quantum dot-induced developmental toxicity in Daphnia magna involves disturbance of symbiotic microorganisms. Sci. Total Environ. 2023, 904, 166825. [Google Scholar] [CrossRef]
- Liu, Y.; Ma, Y.; Chen, M.; Zhou, T.; Ji, R.; Guo, R.; Chen, J. Trophic transfer and environmental safety of carbon dots from microalgae to Daphnia. Sci. Total Environ. 2022, 844, 157201. [Google Scholar] [CrossRef]
- Shi, Q.; Fang, C.; Yan, C.; Chang, X.-L.; Zhang, X.; Zhang, H. Visualization of fullerenol nanoparticles distribution in Daphnia magna using Laser Ablation-isotope Ratio Mass (LA-IRMS) and Matrix-assisted Laser Desorption/Ionization Imaging Mass Spectrometry (MALDI-IMS). Ecotoxicol. Environ. Saf. 2022, 232, 113226. [Google Scholar] [CrossRef]
- Oberdörster, E.; Zhu, S.; Blickley, T.M.; McClellan-Green, P.; Haasch, M.L. Ecotoxicology of carbon-based engineered nanoparticles: Effects of fullerene (C60) on aquatic organisms. Carbon 2006, 44, 1112–1120. [Google Scholar] [CrossRef]
- Malhotra, N.; Audira, G.; Castillo, A.L.; Siregar, P.; Ruallo, J.M.S.; Roldan, M.J.; Chen, J.-R.; Lee, J.-S.; Ger, T.-R.; Hsiao, C.-D. An Update Report on the Biosafety and Potential Toxicity of Fullerene-Based Nanomaterials toward Aquatic Animals. Oxidative Med. Cell. Longev. 2021, 2021, 7995223. [Google Scholar] [CrossRef] [PubMed]
- Nogueira, D.J.; Vaz, V.P.; Neto, O.S.; Silva, M.L.N.d.; Simioni, C.; Ouriques, L.C.; Vicentini, D.S.; Matias, W.G. Crystalline phase-dependent toxicity of aluminum oxide nanoparticles toward Daphnia magna and ecological risk assessment. Environ. Res. 2020, 182, 108987. [Google Scholar] [CrossRef] [PubMed]
- Danabas, D.; Ates, M.; Ertit Tastan, B.; Cicek Cimen, I.C.; Unal, I.; Aksu, O.; Kutlu, B. Effects of Zn and ZnO Nanoparticles on Artemia salina and Daphnia magna Organisms: Toxicity, Accumulation and Elimination. Sci. Total Environ. 2020, 711, 134869. [Google Scholar] [CrossRef]
- Santos-Rasera, J.R.; Monteiro, R.T.R.; de Carvalho, H.W.P. Investigation of acute toxicity, accumulation, and depuration of ZnO nanoparticles in Daphnia magna. Sci. Total Environ. 2022, 821, 153307. [Google Scholar] [CrossRef]
- Hartmann, S.; Beasley, A.; Mozhayeva, D.; Engelhard, C.; Witte, K. Defective defence in Daphnia daughters: Silver nanoparticles inhibit anti-predator defence in offspring but not in maternal Daphnia magna. Sci. Rep. 2020, 10, 8021. [Google Scholar] [CrossRef]
- Ellis, L.-J.A.; Kissane, S.; Hoffman, E.; Brown, J.B.; Valsami-Jones, E.; Colbourne, J.; Lynch, I. Multigenerational Exposures of Daphnia magna to Pristine and Aged Silver Nanoparticles: Epigenetic Changes and Phenotypical Ageing Related Effects. Small 2020, 16, 2000301. [Google Scholar] [CrossRef]
- Kuster, E.; Addo, G.; Aulhorn, S.; Kuhnel, D. Miniaturisation of the Daphnia magna immobilisation assay for the reliable testing of low volume samples. UCL Open Environ. 2025, 1–14. [Google Scholar] [CrossRef]
Category | Pharmaceutical | Concentration in the Environment (ng/L) | Reference Location |
---|---|---|---|
Antibiotic | Amoxicillin | 1.15 | [10] Turkey |
Trimethoprim | 45 | [10] France | |
Erythromycin | 99.22 | [10] Turkey | |
Azithromycin | 147.28 | [10] USA | |
Anticancer | Ifosfamide | 41 | [11] Spain |
Methotrexate | 53 | [12] Canada | |
Cyclophosphamide | 500 | [11] Taiwan | |
Antidepressant | Fluoxetine | 43.6 | [13] Hong Kong |
Venlafaxine | 49.2 | [13] Scotland | |
Sertraline | 335.7 | [13] Hong Kong | |
Antidiabetic | Gliclazide | 75 | [14] South Africa |
Irbesartan | 759 | [14] South Africa | |
Metformin | 41,000 | [15] Canada | |
Antiepileptic | Lamotrigine | 108 | [16] USA |
Carbamazepine | 330 | [16] USA | |
Gabapentin | 2790 | [16] USA | |
β-blocker | Propranolol | 1900 | [17] USA |
Atenolol | 3800 | [17] Hong Kong | |
NSAIDs | Indomethacin | 100 | [18] South Korea |
Ibuprofen | 5300 | [19] Poland | |
Diclofenac | 9000 | [19] Poland | |
Acetyl salicylic acid | 440 | [20] Spain | |
Estrogens | ethinyl estradiol | 2.58 | [21] Iran |
Estrone | 51.7 | [22] China | |
β-estradiol | 107 | [23] South Africa |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Leung, A.; Rowan, E.; Melati Chiappara, F.; Grintzalis, K. Water Monitoring Practices 2.0—Water Fleas as Key Species in Ecotoxicology and Risk Assessment. Limnol. Rev. 2025, 25, 30. https://doi.org/10.3390/limnolrev25030030
Leung A, Rowan E, Melati Chiappara F, Grintzalis K. Water Monitoring Practices 2.0—Water Fleas as Key Species in Ecotoxicology and Risk Assessment. Limnological Review. 2025; 25(3):30. https://doi.org/10.3390/limnolrev25030030
Chicago/Turabian StyleLeung, Anne, Emma Rowan, Flavia Melati Chiappara, and Konstantinos Grintzalis. 2025. "Water Monitoring Practices 2.0—Water Fleas as Key Species in Ecotoxicology and Risk Assessment" Limnological Review 25, no. 3: 30. https://doi.org/10.3390/limnolrev25030030
APA StyleLeung, A., Rowan, E., Melati Chiappara, F., & Grintzalis, K. (2025). Water Monitoring Practices 2.0—Water Fleas as Key Species in Ecotoxicology and Risk Assessment. Limnological Review, 25(3), 30. https://doi.org/10.3390/limnolrev25030030