Ferrochrome Pollution and Its Consequences on Groundwater Ecosystems and Public Health
Abstract
1. Introduction
1.1. Ferrochrome Pollution and Groundwater Contamination
1.2. Impact on Surface Water
1.3. Effects on Marine Coastal Ecosystems
1.4. Public Health Implications
1.5. Mitigation Strategies
2. Materials and Methods
2.1. Suggested Methodology
2.1.1. Surface, Ground, and Marine Water Sampling
2.1.2. Public Health Data Collection
2.1.3. Laboratory Analysis
2.1.4. Ecological Impact Assessment
2.1.5. Health Impact Assessment
2.1.6. Policy Recommendations
3. Assessment of Ferrochrome in Surface and Ground Water Contamination
3.1. Different Exposures for Surface and Groundwater Contamination
3.2. Agricultural Exposure
3.3. Risk of Detection
3.4. Risk of Contamination in Open Drainage
3.5. Different Detection Methods
3.6. Human Factors
4. Measures and Regulations for Assessing Ferrochrome Pollution
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Li, C.; Wang, D.; Zhang, Z.; Choi, J.U.; Huang, J.; Bang, K.; Xu, S.; Wang, Y.; Kim, Y. Poly(Norbornene-Diphenothiazine) for Electrochemical Capture and Release of Chromium and Arsenic Oxyanions from Water. Energy Environ. Mater. 2025, 8, e12865. [Google Scholar] [CrossRef]
- Mercan, D. Approaches to Pollution in Lake Ecosystems, The Library of Life: An Example from Uzungöl (Trabzon, Türkiye). Ecohydrology 2025, 18, e70014. [Google Scholar] [CrossRef]
- Bhoi, R.; Sahu, C.; Naik, B.; Pradhan, A. Health Risk Assessment of Metal(Loid) Pollution in Rice Field via Soil-Paddy Plant System: A Review. Environ. Qual. Manag. 2025, 34, e70061. [Google Scholar] [CrossRef]
- Ouma, K.; Shane, A.; Monde, C.; Syampungani, S. Spatiotemporal Response and Phytopotential of Typha Domingensis for Management of Aquatic Metal Pollution on the Central African Copperbelt. Ecol. Evol. 2025, 15, e71039. [Google Scholar] [CrossRef]
- Joseph, M.M.; Anil, A.T. Spider Webs as Biomonitoring Tool for Heavy Metal Pollution in Diverse Environments: A Study in Kochi City. Environ. Qual. Manag. 2025, 34, e70074. [Google Scholar] [CrossRef]
- Yilmaz, N.; Dogan, I.; Demir, G.; Yalcin, I.E.; Khan, S.; Ozyigit, I.I. Assessment of Pollution in Alibeykoy Dam Lake (Istanbul, Türkiye) and Its Influent Streams: Phytoplankton Composition and Heavy Metal Accumulation. Water Environ. Res. 2025, 97, e70030. [Google Scholar] [CrossRef] [PubMed]
- Magiera, T.; Szuszkiewicz, M. Combination of Portable X-Ray Fluorescence with Soil Magnetometry as an Effective Tool for Distinguish Different Pollution Sources. Land Degrad. Dev. 2025. [CrossRef]
- Tong, N.X.; Hoa, N.K.; Tram, N.T.T.; Khang, L.T.P. Water Quality Index, Heavy Metals, and Endocrine Disruptors in the Saigon River Basin: Pollution Assessment and Correlation Analysis. Environ. Qual. Manag. 2025, 34, e70063. [Google Scholar] [CrossRef]
- El Kouche, S.; Halvick, S.; Morel, C.; Duca, R.-C.; van Nieuwenhuyse, A.; Turner, J.D.; Grova, N.; Meyre, D. Pollution, Stress Response, and Obesity: A Systematic Review. Obes. Rev. 2024, 2025, e13895. [Google Scholar] [CrossRef]
- Siddique, A.; Zaigham, N.A.; Mallick, K.A.; Mumtaz, M.; Saied, S. Geochemical and Geostatistical Investigations of Chromium Pollution in Groundwater. Water Environ. Res. 2008, 80, 149–153. [Google Scholar] [CrossRef]
- Elsayed, A.; Lee, T.; Kim, Y. Maximizing the Efficiency of Single-Stage Partial Nitrification/Anammox Granule Processes and Balancing Microbial Competition Using Insights of a Numerical Model Study. Water Environ. Res. 2025, 97, e70059. [Google Scholar] [CrossRef]
- Xu, B.; Xu, Y.; Wei, J. Research on the Corrosion Resistance and Cytotoxicity of Medical Forged CO-28CR-6MO Alloy. Alloys 2024, 3, 269–280. [Google Scholar] [CrossRef]
- Shabanov, Y.; Makhambetov, Y.; Saulebek, Z.; Toleukadyr, R.; Baisanov, S.; Nurgali, N.; Shotanov, A.; Dossekenov, M.; Zhumagaliyev, Y. Pilot Tests of Pre-Reduction in Chromium Raw Materials from Donskoy Ore Mining and Processing Plant and Melting of High-Carbon Ferrochromium. Metals 2024, 14, 202. [Google Scholar] [CrossRef]
- Cameron, C.R.; Venning, T.J. Maximum Potential Age of Pondcypress Hydrologic Indicators Using Diameter at Breast Height. Limnol. Rev. 2025, 25, 9. [Google Scholar] [CrossRef]
- Křivánková, L.; Chotěborský, R.; Černilová, B.; Linda, M. Analysis of Grain Size and Distribution in FE-B-C Alloy Using Optical Microscopy and Image Analysis. Materials 2025, 18, 596. [Google Scholar] [CrossRef] [PubMed]
- Sahu, N.; Kapure, G.U.; Kumar, P.; Tripathy, S.K.; Biswas, A.; Randhawa, N.S.; Paliwal, M. Value Extraction from Ferrochrome Slag: A Thermochemical Equilibrium Calculation and Experimental Approach. Minerals 2024, 14, 1097. [Google Scholar] [CrossRef]
- Zupančič, M.; Miler, M.; Žibret, G. The Relationship between the Inhalation Bioaccessibility of Potentially Toxic Elements in Road Dust from a Heavily Polluted Industrial Area and the Source of Their Pollution. Environ. Pollut. 2024, 361, 124810. [Google Scholar] [CrossRef]
- Zhou, X.; Hao, X.; Ma, Q.; Luo, Z.; Zhang, M.; Peng, J. Effects of Compound Chemical Activators on the Hydration of Low-Carbon Ferrochrome Slag-Based Composite Cement. J. Environ. Manag. 2017, 191, 58–65. [Google Scholar] [CrossRef]
- Banerjee, S.; Mandal, J.; Sarkar, D.; Datta, R.; Bhattacharyya, P. A Review and Meta-Analysis of the Efficacy of Arbuscular Mycorrhizal Fungi in Remediating Toxic Metals in Mine-Affected Soils. Front. Environ. Sci. 2025, 12, 1532169. [Google Scholar] [CrossRef]
- Long, C.; Wang, X.; Wang, D.; Chen, Y.; Zhang, B. Deciphering the Impact of Heavy Metal Mixed Exposure on Lipid Metabolism Using Three Statistical Models. Environ. Geochem. Health 2024, 47, 20. [Google Scholar] [CrossRef]
- Vinay, B.K.; Suranjan, T.R.; Bagchi, S. Chromium Contamination in Water: A Comparative Analysis of Detection Methods with a Focus on Portability. Int. J. Environ. Anal. Chem. 2025, 1–30. [Google Scholar] [CrossRef]
- Botle, A.; Salgaonkar, S.; Tiwari, R.; Barabde, G. Heavy Metal Pollution in River Ulhas, Maharashtra, India: Unraveling Contamination Dynamics through Pollution Indices, Multivariate Analysis, and Health Risk Assessment. Int. J. Environ. Res. 2025, 19, 88. [Google Scholar] [CrossRef]
- Sultanbayeva, G.; Kaiynbayeva, R.; Chernyakova, R.; Temel, H.; Jussipbekov, U.; Tassibekov, K. Sustainable Chromium Remediation: Sorption of Chromium from Leaching Solutions of Refined. Sustainability 2025, 17, 2726. [Google Scholar] [CrossRef]
- Shadrack, A.A. OFFSHORE DRILLING WASTES DISPOSAL TECHNIQUES AND REDUCTION OF ECOLOGICAL IMPACT IN DRILLING OPERATION. J. Phys. Sci. Eng. 2024, 10, 107–108. [Google Scholar]
- Sazakli, E. Human Health Effects of Oral Exposure to Chromium: A Systematic Review of the Epidemiological Evidence. Int. J. Environ. Res. Public Health 2024, 21, 406. [Google Scholar] [CrossRef] [PubMed]
- Sharma, P.; Singh, S.P.; Parakh, S.K.; Tong, Y.W. Health Hazards of Hexavalent Chromium (Cr (VI)) and Its Microbial Reduction. Bioengineered 2022, 13, 4923–4938. [Google Scholar] [CrossRef] [PubMed]
- Beukes, J.P.; Du Preez, S.P.; Van Zyl, P.G.; Paktunc, D.; Fabritius, T.; Päätalo, M.; Cramer, M. Review of Cr(VI) Environmental Practices in the Chromite Mining and Smelting Industry—Relevance to Development of the Ring of Fire, Canada. J. Clean. Prod. 2017, 165, 874–889. [Google Scholar] [CrossRef]
- Abebe, Y.; Alamirew, T.; Whitehead, P.; Charles, K.; Alemayehu, E. Spatio-Temporal Variability and Potential Health Risks Assessment of Heavy Metals in the Surface Water of Awash Basin, Ethiopia. Heliyon 2023, 9, e15832. [Google Scholar] [CrossRef]
- Vodyanitskii, Y.N. Contamination of Soils with Heavy Metals and Metalloids and Its Ecological Hazard (Analytic Review). Eurasian Soil Sci. 2013, 46, 793–801. [Google Scholar] [CrossRef]
- Niede, R.; Benbi, D.K. Integrated Review of the Nexus between Toxic Elements in the Environment and Human Health. AIMS Public Health 2022, 9, 758–789. [Google Scholar] [CrossRef]
- Georgaki, M.-N.; Charalambous, M.; Kazakis, N.; Talias, M.A.; Georgakis, C.; Papamitsou, T.; Mytiglaki, C. Chromium in Water and Carcinogenic Human Health Risk. Environments 2023, 10, 33. [Google Scholar] [CrossRef]
- Ratnalu, G.V.; Dhakate, R. Human Health Hazard Evaluation with Reference to Chromium (Cr+3 and Cr+6) in Groundwater of Bengaluru Metropolitan City, South India. Arab. J. Geosci. 2021, 14, 2472. [Google Scholar] [CrossRef]
- Saravanan, P.; Saravanan, V.; Rajeshkannan, R.; Arnica, G.; Rajasimman, M.; Baskar, G.; Pugazhendhi, A. Comprehensive Review on Toxic Heavy Metals in the Aquatic System: Sources, Identification, Treatment Strategies, and Health Risk Assessment. Environ. Res. 2024, 258, 119440. [Google Scholar] [CrossRef] [PubMed]
- Mukherjee, A.B. Chromium in the Environment of Finland. Sci. Total. Environ. 1998, 217, 9–19. [Google Scholar] [CrossRef] [PubMed]
- Mawari, G.; Kumar, N.; Sarkar, S.; Frank, A.L.; Daga, M.K.; Singh, M.M.; Joshi, T.K.; Singh, I. Human Health Risk Assessment Due to Heavy Metals in Ground and Surface Water and Association of Diseases With Drinking Water Sources: A Study From Maharashtra, India. Environ. Health Insights 2022, 16, 1–11. [Google Scholar] [CrossRef]
- Tong, S.; Li, H.; Tudi, M.; Yuan, X.; Yang, L. Comparison of Characteristics, Water Quality and Health Risk Assessment of Trace Elements in Surface Water and Groundwater in China. Ecotoxicol. Environ. Saf. 2021, 219, 112283. [Google Scholar] [CrossRef]
- Das, S.; Sultana, K.W.; Ndhlala, A.R.; Mondal, M.; Chandra, I. Heavy Metal Pollution in the Environment and Its Impact on Health: Exploring Green Technology for Remediation. Environ. Health Insights 2023, 17, 1–10. [Google Scholar] [CrossRef]
- Kormoker, T.; Kabir, M.H.; Khan, R.; Islam, M.S.; Shammi, R.S.; Al, M.A.; Proshad, R.; Tamim, U.; Sarker, M.E.; Taj, M.T.I.; et al. Road Dust–Driven Elemental Distribution in Megacity Dhaka, Bangladesh: Environmental, Ecological, and Human Health Risks Assessment. Environ. Sci. Pollut. Res. 2021, 29, 22350–22371. [Google Scholar] [CrossRef]
- Hasan, A.B.; Reza, A.H.M.S.; Siddique, M.A.B.; Akbor, M.A.; Nahar, A.; Hasan, M.; Zaman, M.N.; Hasan, M.I.; Moniruzzaman, M. Spatial Distribution, Water Quality, Human Health Risk Assessment, and Origin of Heavy Metals in Groundwater and Seawater around the Ship-Breaking Area of Bangladesh. Environ. Sci. Pollut. Res. 2022, 30, 16210–16235. [Google Scholar] [CrossRef]
- Putra, A.; Arman, E.; Fitri, W.E.; Mayaserli, D.P.; Putra, A.Y.; Febria, F.A. The Risks and Impacts of Chromium Metals on Human Health and Ecosystems. Al-Kimia 2024, 12. [Google Scholar] [CrossRef]
- Varol, M. Environmental, Ecological and Health Risks of Trace Metals in Sediments of a Large Reservoir on the Euphrates River (Turkey). Environ. Res. 2020, 187, 109664. [Google Scholar] [CrossRef] [PubMed]
- Das Sharma, M.; Juyal, A.; Karuna, M.; Das Sharma, S. Spectrophotometer-Based Student Education Program on Health Hazard Assessment Due to Cr(VI) and Pb Contamination in Surface and Groundwaters of Hyderabad City, India. Pollution 2015, 2, 139–149. [Google Scholar]
- Sankhla, M.S. Contaminant of Heavy Metals in Groundwater & Its Toxic Effects on Human Health & Environment. Int. J. Environ. Sci. Nat. Resour. 2019, 18, 555996. [Google Scholar] [CrossRef]
- Vethanayaham, J.; Partheeban, E.C.; Kolandhasamy, P.; Dharmaraj, V.; Rajendran, R.; Sadayan, P. Assessment of Groundwater Quality and the Effects of Chromium Residues in the Vicinity of Shutdown Tanneries. Total Environ. Adv. 2024, 11, 200106. [Google Scholar] [CrossRef]
- Naz, A.; Chowdhury, A.; Mishra, B.K.; Gupta, S.K. Metal Pollution in Water Environment and the Associated Human Health Risk from Drinking Water: A Case Study of Sukinda Chromite Mine, India. Hum. Ecol. Risk Assess. Int. J. 2016, 22, 1433–1455. [Google Scholar] [CrossRef]
- Khan, C.; Malik, R.N.; Chen, J. Human Exposure to Chromite Mining Pollution, the Toxicity Mechanism and Health Impact. Heliyon 2024, 10, e40083. [Google Scholar] [CrossRef]
- Peng, B.; Wang, M.; Wu, Y.; Huang, S.; Zhang, Y.; Huang, J.; Wang, Y.; Chen, C. Anthropogenic Activities Affect the Diverse Autotrophic Communities of Coastal Sediments. Environ. Pollut. 2024, 361, 124817. [Google Scholar] [CrossRef]
- Kauneliene, V.; Bagdonas, E.; Aldonyte, R.; Raudoniute, J.; Ciuzas, D.; Bagdoniene, L.; Pocevičiūtė, G.; Prasauskas, T.; Krugly, E.; Martuzevicius, D. Cytotoxicity of the Exhaled Aerosol Particles from the Usage of Conventional Cigarette and Heated Tobacco Product as Determined by a Novel “Cells-on-Particles” Exposure Model in Vitro. Environ. Pollut. 2024, 361, 124870. [Google Scholar] [CrossRef]
- Sørensen, L.; Hovsbakken, I.A.; Wielogorska, E.; Creese, M.; Sarno, A.; Caban, M.; Sokolowski, A.; Øverjordet, I.-B. Impact of Seawater Temperature and Physical-Chemical Properties on Sorption of Pharmaceuticals, Stimulants, and Biocides to Marine Particles. Environ. Pollut. 2024, 361, 124838. [Google Scholar] [CrossRef]
- Wang, K.; Yan, D.; Chen, X.; Xu, Z.; Cao, W.; Li, H. New Insight to the Enriched Microorganisms Driven by Pollutant Concentrations and Types for Industrial and Domestic Wastewater via Distinguishing the Municipal Wastewater Treatment Plants. Environ. Pollut. 2024, 361, 124789. [Google Scholar] [CrossRef]
- García-Garcinuño, R.; Marcé, R.M.; Vallecillos, L.; Borrull, F. Passive Sampling of High Production Volume Chemicals and Polycyclic Aromatic Hydrocarbons in Urban Atmospheres near Petrochemical Sites: Uptake Rate Determination and Application. Environ. Pollut. 2024, 361, 124697. [Google Scholar] [CrossRef] [PubMed]
- Roselli-Laclau, A.; García-Alonso, J.; Valdés-Goméz, A.; Freitas-Souza, M.; De Rezende, C.E.; Franco-Trecu, V. Unveiling Mercury Levels: Trophic Habits Influence on Bioaccumulation in Two Otariid Species. Environ. Pollut. 2024, 361, 124804. [Google Scholar] [CrossRef] [PubMed]
- Al-Jabri, K.; Shoukry, H. Influence of Nano Metakaolin on Thermo-Physical, Mechanical and Microstructural Properties of High-Volume Ferrochrome Slag Mortar. Constr. Build. Mater. 2018, 177, 210–221. [Google Scholar] [CrossRef]
- Cheng, Z.; Geng, X. Investigation of Unconfined Compressive Strength for Biopolymer Treated Clay. Constr. Build. Mater. 2023, 385, 131458. [Google Scholar] [CrossRef]
- Kumar, P.M.; Halder, P.; Husain, A.; Samad, A. Performance Enhancement of Wells Turbine: Combined Radiused Edge Blade Tip, Static Extended Trailing Edge, and Variable Thickness Modifications. Ocean Eng. 2019, 185, 47–58. [Google Scholar] [CrossRef]
- Gao, S.; Cui, X.; Kang, S.; Ding, Y. Sustainable Applications for Utilizing Molybdenum Tailings in Concrete. J. Clean. Prod. 2020, 266, 122020. [Google Scholar] [CrossRef]
- Mishra, J.; Das, S.K.; Krishna, R.S.; Nanda, B.; Patro, S.K.; Mustakim, S.M. Synthesis and Characterization of a New Class of Geopolymer Binder Utilizing Ferrochrome Ash (FCA) for Sustainable Industrial Waste Management. Mater. Today Proc. 2020, 33, 5001–5006. [Google Scholar] [CrossRef]
- Laxman, K.; Husain, A.; Nasser, A.; Abri, M.A.; Dutta, J. Tailoring the Pressure Drop and Fluid Distribution of a Capacitive Deionization Device. Desalination 2018, 449, 111–117. [Google Scholar] [CrossRef]
- Banerjee, S.; Ghosh, S.; Jha, S.; Kumar, S.; Mondal, G.; Sarkar, D.; Datta, R.; Mukherjee, A.; Bhattacharyya, P. Assessing Pollution and Health Risks from Chromite Mine Tailings Contaminated Soils in India by Employing Synergistic Statistical Approaches. Sci. Total Environ. 2023, 880, 163228. [Google Scholar] [CrossRef]
- Tripathy, S.K.; Murthy, Y.R.; Suresh, N.; Filippov, L.O. Carbothermic Reduction Roasting for Processing of Ferruginous Chromite Ore Using Conventional and Microwave Heating. Adv. Powder Technol. 2021, 32, 2234–2247. [Google Scholar] [CrossRef]
- Matern, K.; Kletti, H.; Mansfeldt, T. Chemical and Mineralogical Characterization of Chromite Ore Processing Residue from Two Recent Indian Disposal Sites. Chemosphere 2016, 155, 188–195. [Google Scholar] [CrossRef] [PubMed]
- Liu, Z.; Zheng, J.; Liu, W.; Liu, X.; Chen, Y.; Ren, X.; Ning, P.; Lin, Z. Identification of the Key Host Phases of Cr in Fresh Chromite Ore Processing Residue (COPR). Sci. Total Environ. 2019, 703, 135075. [Google Scholar] [CrossRef] [PubMed]
- Swanepoel, S.; Garbers-Craig, A.M. Isothermal Oxidation Kinetics of Industrial South African Chromite Concentrates in Air. Miner. Eng. 2023, 202, 108263. [Google Scholar] [CrossRef]
- Zhao, Q.; Liu, C.; Yang, D.; Shi, P.; Jiang, M.; Li, B.; Saxén, H.; Zevenhoven, R. A Cleaner Method for Preparation of Chromium Oxide from Chromite. Process Saf. Environ. Prot. 2016, 105, 91–100. [Google Scholar] [CrossRef]
- Ma, X.; Zhang, X.-R.; Sun, Y.-J.; Xi, Z.-H.; Liu, J.-Z.; Feng, Z.-T.; Zhou, J.-M.; Liu, X.-T.; Wang, Y.; Jin, R.-C.; et al. Reason and Control Strategy for Denitrification and Anammox Sludge Flotation in Nitrogen Removal Process: Mechanisms, Strategies and Perspectives. Environ. Res. 2024, 258, 119456. [Google Scholar] [CrossRef]
- Zheng, J.; Gao, C.; Du, X.; Chen, H.; Han, R.; Xie, J.; Zou, D.; Song, Q.; Wang, Z.; Li, X. Synthesis of Iron-Manganese Bimetallic Materials Supported by Activated Carbon and Application of Activated Persulfate in the Degradation of Soil Contaminated by Crude Oil. Environ. Res. 2024, 258, 119455. [Google Scholar] [CrossRef]
- Zhu, M.; Liang, H.; Gong, X. β-Cyclodextrin Modified GO Ultrafiltration Membranes with Enhanced Antifouling Property for Water Purification. Environ. Res. 2024, 258, 119472. [Google Scholar] [CrossRef]
- Pugazhendhi, A.; Kamarudin, S.K.; Chinnathambi, A.; Alharbi, S.A.; G, R. Investigation of Bionano Additives in Red Algae Cyanidioschyzon Merolae Ultrasonified MgO/MWCNT Catalyzed Biodiesel in Optimized Engine Performance. Environ. Res. 2024, 258, 119352. [Google Scholar] [CrossRef]
- Shanmuganathan, R.; Sharma, A.; Alshehri, M.A.; Kamarudin, S.K.; Arivalagan, P. Mesoporous SO42−/Kit-6-Catalyzed Hydrocracking of Waste Chicken Oil. Environ. Res. 2024, 258, 119482. [Google Scholar] [CrossRef]
- Sanada, Y.; Katata, G.; Kaneyasu, N.; Nakanishi, C.; Urabe, Y.; Nishizawa, Y. Altitudinal Characteristics of Atmospheric Deposition of Aerosols in Mountainous Regions: Lessons from the Fukushima Daiichi Nuclear Power Station Accident. Sci. Total Environ. 2018, 618, 881–890. [Google Scholar] [CrossRef]
- Higaki, S.; Kurihara, Y.; Yoshida, H.; Takahashi, Y.; Shinohara, N. Discovery of Non-Spherical Heterogeneous Radiocesium-Bearing Particles Not Derived from Unit 1 of the Fukushima Dai-Ichi Nuclear Power Plant, in Residences Five Years after the Accident. J. Environ. Radioact. 2017, 177, 65–70. [Google Scholar] [CrossRef] [PubMed]
- Kroflič, A.; Germ, M.; Golob, A.; Stibilj, V. Does Extensive Agriculture Influence the Concentration of Trace Elements in the Aquatic Plant Veronica Anagallis-Aquatica? Ecotoxicol. Environ. Saf. 2017, 150, 123–128. [Google Scholar] [CrossRef] [PubMed]
- Dalvand, A.; Jahangiri, A.; Iranmanesh, J. Introduce Lichen Lepraria Incana as Biomonitor of Cesium-137 from Ramsar, Northern Iran. J. Environ. Radioact. 2016, 160, 36–41. [Google Scholar] [CrossRef]
- Bouisset, P.; Nohl, M.; Bouville, A.; Leclerc, G. Inventory and Vertical Distribution of 137 Cs, 239+240 Pu and 238 Pu in Soil from Raivavae and Hiva Oa, Two French Polynesian Islands in the Southern Hemisphere. J. Environ. Radioact. 2018, 183, 82–93. [Google Scholar] [CrossRef] [PubMed]
- Hegedűs, M.; Tóth-Bodrogi, E.; Jónás, J.; Somlai, J.; Kovács, T. Mobility of 232 Th and 210 Po in Red Mud. J. Environ. Radioact. 2018, 184–185, 71–76. [Google Scholar] [CrossRef]
- Hossain, M.; Patra, P.K. Contamination Zoning and Health Risk Assessment of Trace Elements in Groundwater through Geostatistical Modelling. Ecotoxicol. Environ. Saf. 2019, 189, 110038. [Google Scholar] [CrossRef]
- Qiao, J.; Zhu, Y.; Jia, X.; Shao, M.; Niu, X.; Liu, J. Distributions of Arsenic and Other Heavy Metals, and Health Risk Assessments for Groundwater in the Guanzhong Plain Region of China. Environ. Res. 2019, 181, 108957. [Google Scholar] [CrossRef]
- Ravindra, K.; Mor, S. Distribution and Health Risk Assessment of Arsenic and Selected Heavy Metals in Groundwater of Chandigarh, India. Environ. Pollut. 2019, 250, 820–830. [Google Scholar] [CrossRef]
- Long, J.; Luo, K. Elements in Surface and Well Water from the Central North China Plain: Enrichment Patterns, Origins, and Health Risk Assessment. Environ. Pollut. 2019, 258, 113725. [Google Scholar] [CrossRef]
- Bodrud-Doza, M.; Islam, S.M.D.-U.; Rume, T.; Quraishi, S.B.; Rahman, M.S.; Bhuiyan, M.A.H. Groundwater Quality and Human Health Risk Assessment for Safe and Sustainable Water Supply of Dhaka City Dwellers in Bangladesh. Groundw. Sustain. Dev. 2020, 10, 100374. [Google Scholar] [CrossRef]
- Liang, M.; Liang, H.; Rao, Z.; Xu, D. Occurrence of Polycyclic Aromatic Hydrocarbons in Groundwater from Rural Areas in Eastern China: Spatial Distribution, Source Apportionment and Health Cancer Risk Assessment. Chemosphere 2020, 259, 127534. [Google Scholar] [CrossRef]
- Mao, L.; Liu, L.; Yan, N.; Li, F.; Tao, H.; Ye, H.; Wen, H. Factors Controlling the Accumulation and Ecological Risk of Trace Metal(Loid)s in River Sediments in Agricultural Field. Chemosphere 2019, 243, 125359. [Google Scholar] [CrossRef]
- Rani, S.; Ahmed, M.K.; Xiongzhi, X.; Keliang, C.; Islam, M.S.; Habibullah-Al-Mamun, M. Occurrence, Spatial Distribution and Ecological Risk Assessment of Trace Elements in Surface Sediments of Rivers and Coastal Areas of the East Coast of Bangladesh, North-East Bay of Bengal. Sci. Total Environ. 2021, 801, 149782. [Google Scholar] [CrossRef] [PubMed]
- Ustaoğlu, F.; Islam, M.S. Potential Toxic Elements in Sediment of Some Rivers at Giresun, Northeast Turkey: A Preliminary Assessment for Ecotoxicological Status and Health Risk. Ecol. Indic. 2020, 113, 106237. [Google Scholar] [CrossRef]
- Ru, X.; Liao, J.; Liang, L.; Wen, Z.; Wei, J.; Wei, C.; Li, F. Quantification of the Relationship between Multiple Metal(Loid) Distribution and Integrated Effect of Internal-External Factors in Riverbed Sediments across Xijiang River Basin, South China. Sci. Total Environ. 2018, 643, 527–538. [Google Scholar] [CrossRef]
- Hossain, M.S.; Ahmed, M.K.; Sarker, S.; Rahman, M.S. Seasonal Variations of Trace Metals from Water and Sediment Samples in the Northern Bay of Bengal. Ecotoxicol. Environ. Saf. 2020, 193, 110347. [Google Scholar] [CrossRef]
- Tokatlı, C.; Varol, M. Variations, Health Risks, Pollution Status and Possible Sources of Dissolved Toxic Metal(Loid)s in Stagnant Water Bodies Located in an Intensive Agricultural Region of Turkey. Environ. Res. 2021, 201, 111571. [Google Scholar] [CrossRef]
- Acharya, P.K.; Patro, S.K. Effect of Lime and Ferrochrome Ash (FA) as Partial Replacement of Cement on Strength, Ultrasonic Pulse Velocity and Permeability of Concrete. Constr. Build. Mater. 2015, 94, 448–457. [Google Scholar] [CrossRef]
- Kleijer, A.L.; Lasvaux, S.; Citherlet, S.; Viviani, M. Product-Specific Life Cycle Assessment of Ready Mix Concrete: Comparison between a Recycled and an Ordinary Concrete. Resour. Conserv. Recycl. 2017, 122, 210–218. [Google Scholar] [CrossRef]
- Jena, S.; Panigrahi, R. Feasibility Study of the Properties of Geopolymer Concrete with Ferrochrome Slag and Silica Fume. Mater. Today Proc. 2020, 38, 2476–2480. [Google Scholar] [CrossRef]
- Das, P.; Chakraborty, S.; Barai, S.V. Flexural Behaviour of Fly Ash Incorporated Ferrochrome Slag Aggregate Reinforced Concrete Beam. J. Build. Eng. 2023, 76, 107317. [Google Scholar] [CrossRef]
- Lehman, J.T. Historical Phosphorus Kinetics and Ambient Orthophosphate Concentrations in the St. Lawrence Great Lakes Erie, Huron, Michigan, St. Clair, and Superior by a Modified Inverse Isotope Dilution Method. Limnol. Rev. 2025, 25, 10. [Google Scholar] [CrossRef]
- Mamun, A.; Sharif, H.O. Quantification of Nitrate Level in Shallow and Deep Groundwater Wells for Drinking, Domestic and Agricultural Uses in Northeastern Arid Regions of Saudi Arabia. Limnol. Rev. 2024, 24, 178–191. [Google Scholar] [CrossRef]
- Al-Nuaami, W.; Dawod, L.; Kibria, B.; Ghorbani, S. Design and Implementation of a Deep Learning Model and Stochastic Model for the Forecasting of the Monthly Lake Water Level. Limnol. Rev. 2024, 24, 217–234. [Google Scholar] [CrossRef]
- Markus-Michalczyk, H.; Smith, Z.; Bouma, T.J. Floodplain Forest Foundation Species Salix Alba L. Is Resilient to Seawater Pulses during Winter. Limnol. Rev. 2024, 24, 250–265. [Google Scholar] [CrossRef]
- Valkova, E.; Atanasov, V.; Marinova, M.H.; Yordanova, A.; Yakimov, K.; Kutsarov, Y. Application of Crustaceans as Ecological Markers for the Assessment of Pollution of Brackish Lakes of Bulgaria Based on Their Ability to Accumulate the Heavy Metals CD, ZN and NI. Limnol. Rev. 2024, 24, 282–300. [Google Scholar] [CrossRef]
- Kirvel, I.; Martyniuk, V.; Kovalchuk, I.; Andronache, I.; Korbutiak, V.; Zubkovych, I. A Cartographic Landscape Analysis of the Geo-Ecological Condition of the Natural Reserve Object—Lake Doshne (Volyn Polissya, Ukraine). Limnol. Rev. 2024, 24, 385–405. [Google Scholar] [CrossRef]
- Abdelmagid, T.I.M.; Abdel-Magid, I.; Elsadig, E.H.O.; Abdalla, G.M.T.; Abdel-Magid, H.I.M.; Lakhouit, A.; Al-Rashed, W.S.; Yaseen, A.H.A.; Hayder, G. Site Selection Optimisation Using Fuzzy-GIS Integration for Wastewater Treatment Plant. Limnol. Rev. 2024, 24, 354–373. [Google Scholar] [CrossRef]
- Sahoo, D.; Tran, N.K.N.; Nguyen, T.G.-H.; Ho, T.T.H.; Phan, T.T.H.; Hoang, D.T.H.; Binh, N.H.; Nguyen, T.T.L.; Doc, L.Q.; Bouaïcha, N.; et al. Co-Occurrence of Cyanotoxins and Phycotoxins in One of the Largest Southeast Asian Brackish Waterbodies: A Preliminary Study at the Tam Giang—Cau Hai Lagoon (Vietnam). Limnol. Rev. 2024, 24, 335–353. [Google Scholar] [CrossRef]
- Ramírez-Aldaba, H.; López-Serrano, P.M.; García-Montiel, E.; Morones-Esquivel, M.M.; Bocanegra-Salazar, M.; Borrego-Núñez, C.; Loera-Sánchez, J.M. Prediction of Tropospheric Ozone Levels from Land Surface Temperature in the Urban Area of Durango, Dgo., Mexico. Pollutants 2025, 5, 3. [Google Scholar] [CrossRef]
- Chrysakopoulou, C.; Aidona, E.; Vogiatzis, D.; Drakoulis, A.; Papadopoulou, L.; Kantiranis, N. Environmental Profile Assessment in a Highly Industrialized Area through Magnetic Susceptibility Spatial Variations and Morphological Study of Magnetic Particles: The Case of Sarigiol Basin (Greece). Pollutants 2025, 5, 4. [Google Scholar] [CrossRef]
Compounds | Percentage | Hazardous Effect |
---|---|---|
Mg | 18.1 | Respiratory depression, magnesium poisoning, cardiac arrest, gastrointestinal issues, bone health disruption |
Cr | 14.5 | Respiratory depression, skin irritation and ulcers, reproductive and developmental toxicity, allergies |
Si | 11.5 | Lung cancer, silicosis, respiratory problems, eye irritation, systemic toxicity |
Fe | 6.1 | acute poisoning, hemochromatosis, skin irritation |
Al | 12.8 | Respiratory issues, bone diseases, cognitive impairment |
Zn | 1.6 | Reduced immune function, skin irritation, respiratory issues |
Ca | 1.6 | Hypercalcemia, kidney stones, cardiovascular issues, reproductive health issues |
Cu | 1.2 | Wilson’s disease, hemolysis, skin and eye irritation |
Mn | 1.5 | Muscle weakness and fatigue, behavioral changes, skin and eye irritation |
Ni | 1.2 | Gastrointestinal issues |
Pb | 0.1 | Allergies |
Ti | 0.5 | Respiratory issues, eye irritation |
Exposure Pathway | Source | Contaminants | Impacts | Health Risk |
---|---|---|---|---|
Irrigation water | Discharge from ferrochrome industries | Chromium (Cr), heavy Metals (Ni, Pb, Cd) | Bioaccumulation in crops | Consumption of contaminated food |
Soil contamination | Irrigation with polluted water | Hexavalent chromium (Cr(VI)), arsenic | Reduced soil fertility, altered pH | Dermal exposure, ingestion via crops |
Groundwater infiltration | Leaching from industrial effluents | Chromium, sulfates, fluorides | Toxic accumulation in soil and water | Contaminated drinking water, kidney damage |
Crop absorption | Uptake by plants | Chromium, lead, cadmium | Reduced yield, toxic residues in food | Long-term health issues |
Livestock contamination | Drinking contaminated water, eating crops | Chromium, heavy metals | Health issues in livestock, bioaccumulation | Indirect exposure through milk/meat consumption |
Detection Methods | Target Contaminants | Advantages |
---|---|---|
Atomic absorption spectroscopy (AAS) | Chromium (Cr), lead (Pb), cadmium (Cd), nickel (Ni) | High sensitivity, quantitative analysis |
Inductively coupled plasma mass spectrometry (ICP-MS) | Heavy metals (Cr, Pb, Cd, Ni, As) | Ultra-trace detection, high accuracy |
UV-visible spectrophotometry | Hexavalent chromium (Cr(VI)) | Simple, cost-effective for Cr(VI) |
X-ray fluorescence (XRF) | Heavy metals, total chromium | Non-destructive, rapid analysis |
Electrochemical methods (e.g., anodic stripping voltammetry) | Chromium, lead, cadmium | Portable, low-cost, field applications |
Chromatographic methods (e.g., ICP-OES, HPLC) | Chromium species (Cr(III), Cr(VI)), organics | High specificity, accurate speciation |
Biosensors | Chromium, arsenic, heavy metals | Fast, low-cost, eco-friendly |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Patra, B.; Das, M.T.; Pradhan, S.N.; Dash, S.R.; Bhuyan, P.P.; Pradhan, B. Ferrochrome Pollution and Its Consequences on Groundwater Ecosystems and Public Health. Limnol. Rev. 2025, 25, 23. https://doi.org/10.3390/limnolrev25020023
Patra B, Das MT, Pradhan SN, Dash SR, Bhuyan PP, Pradhan B. Ferrochrome Pollution and Its Consequences on Groundwater Ecosystems and Public Health. Limnological Review. 2025; 25(2):23. https://doi.org/10.3390/limnolrev25020023
Chicago/Turabian StylePatra, Biswajit, Mihir Tanay Das, Surya Narayan Pradhan, Soumya Ranjan Dash, Prajna Paramita Bhuyan, and Biswajita Pradhan. 2025. "Ferrochrome Pollution and Its Consequences on Groundwater Ecosystems and Public Health" Limnological Review 25, no. 2: 23. https://doi.org/10.3390/limnolrev25020023
APA StylePatra, B., Das, M. T., Pradhan, S. N., Dash, S. R., Bhuyan, P. P., & Pradhan, B. (2025). Ferrochrome Pollution and Its Consequences on Groundwater Ecosystems and Public Health. Limnological Review, 25(2), 23. https://doi.org/10.3390/limnolrev25020023