Unveiling the Hydrochemical and Ecotoxicological Insights of Copper and Zinc: Impacts, Mechanisms, and Effective Remediation Approaches
Abstract
1. Introduction
2. Zinc
2.1. Occurrence of Zinc in Surface Waters and Sediments
1970s | 1980s | 1990s | 2000s | 2010s | |
---|---|---|---|---|---|
Concentrations over time | |||||
Mean ± S.E. | |||||
Zn | 52.2 ± 24.4 (12) | 60.2 ± 30.5 (10) | 1948.7 ± 394.7 (13) | 842.8 ± 649.1 (83) | 1180.1 ± 456.9 (74) |
Cu | 5.9 ± 1.6 (12) | 8.5 ± 6.1 (10) | 84.6 ± 53.6 (6) | 433.6 ± 307.7 (90) | 120.0 ± 39.3 (61) |
Concentrations across five continents | |||||
Africa | Asia | Europe | North America | South America | |
Zn | 1169.0 ± 680.7 (42) | 889.6 ± 48.9 (122) | 1339.0 ± 979.9 (19) | 86.9 ± 48.5 (7) | 680.5 ± 608.4 (5) |
Cu | 190.8 ± 67.2 (37) | 345.9 ± 246.4 (113) | 14.6 ± 2.8 (18) | 15.9 ± 9.8 (6) | 142.6 ± 70.6 (6) |
2.2. Zinc Mobility and Complexation
2.3. Zn Bioaccumulation in Biota and Toxicity
2.4. Bioremediation of Zinc Pollution
3. Copper
3.1. Occurrence of Copper in Surface Waters and Sediments
Country | Place | Concentration Range: Surface Water (µg·L−1) Sediment (µg·kg−1 D.M.) | Ref. | |
---|---|---|---|---|
Cu | ASIA | |||
India | Southeastern coastal: Andhra Pradesh | <0.027 | Mahdi et al., 2022 [36] | |
Thailand | Chao Phraya River (n = 16) | 1.81–5.63 (rainy season); <LOQ–5.62 (dry season) | Niampradit et al.2024 [37] | |
Chao Phraya River (n = 9) | 1.12–14.22 | Chanpiwat and Sthiannopkao 2013 [38] | ||
Tha Chin River (n = 38) | 10–1200 | Veschasit et al., 2012 [39] | ||
Cambodia | Tonle Sap-Bassac River (n = 11) | 0.25–1.62 | Veschasit et al., 2012 [39] | |
Indonesia | Citarum River (n = 10) | 0.51–6.94 | Veschasit et al., 2012 [39] | |
Winongo River (n = 8) | 0–40 | Fadlillah et al., 2023 [40] | ||
Malaysia | Linggi River (n = 15) | 0.06–3.06 | Razak et al., 2021 [41] | |
Semenyih River (n = 8) | 0.84–7.33 | Al-Badaii 2014 [42] | ||
Vietnam | Saigon River (n = 8) | 0.55–16.51 | Chanpiwat and Sthiannopkao 2013 [38] | |
Iran | Chah Nimeh reservoir—surface water (n = 7) | 11–115 (spring) 174–217 (summer) | Bazrafshan et al., 2015 [43] | |
Chah Nimeh reservoir—sediment (n = 7) | 3000–5000 (spring) 3400–5180 (summer) | |||
China | Dianchi Lake: water surface/sediment | 1.36/146,200 | Liu et al., 2021 [44] | |
Chaohu Lake: water surface/sediment | 2.56/26,900 | Wang et al., 2016 [45] | ||
Daye Lake: water surface/sediment | 2.16–3.01/143,100 | Wang et al., 2023 [46] | ||
Yangtze River: water surface/sediment | 2.86/28,500 | Li et al., 2020 [47] | ||
EUROPE | ||||
Poland | Muchawka River (n = 16/12): surface water/sediment | 0.2–1.8/700–4300 | Kluska and Jabłonska 2023 [48] | |
Liwiec River (n = 32) surface water/sediment | 0.3–1.6/900–7400 | |||
Greece | Bay and Gulf of Thessaloniki (Aegean Sea including the Bay and Gulf of Thessaloniki) | 0.8–5.5 | Christophoridis et al., 2009 [49] | |
Turkey | Ataturk lake—sediment | 14,570 | Karadede and Unlu, 2000 [50] | |
The Dipsiz stream (sediment)—tributary of the river Buyuk Menderes | 13.000 ± 9.000 | Demirak et al., 2006 [51] | ||
The Dipsiz stream—tributary of the river Buyuk Menderes | 0.365 ± 0.394 | |||
Spain | Guadaira river: surface water/sediment | 10–20/13,900–142,600 | Enguix Gonzalez et al., 2000 [52] | |
Tinto River (sediment) | 180,000–2650.000 | Galan et al., 2003 [52] | ||
France | Cajarc site, Lot River (sediment) | 40,600–264,000 | Audry et al., 2004 [54] | |
Germany | Malter Reservoir | <240,000 | Muller et al., 2000 [55] | |
Scotland | Lochnagar (sediment) | 8000–25,000 | Yang et al., 2002 [56] | |
Switzerland | Lake Zurich (sediment) | 20,000–78,000 | Von Gunten et al., 1997 [57] | |
Netherlands | Meuse River (sediment) | 50,000–105,000 | Van der Berg et al., 1999 [58] | |
AMERICA | ||||
Mexico | Campeche Bay | 5.6–11.4 | Villanueva 2000 [152] | |
Continental shelf—Campeche (sediment) | 3800–18,700 | Macias et al., 1999 [153] | ||
Continental shelf—Tamaulipas (sediment) | 3200–24,980 | Ponce 1995 [59] | ||
Continental shelf— Veracruz (sediment) | 1600–91,250 | |||
United States | 300 coastal and estuarine sites (sediment) | 35,000 (Average) | O’Connor and Cantillo 1992 [61] | |
San Francisco Bay | 0.2–5.3 | Sadiq 1992 [154] | ||
U.S. Virgin Islands | Developed sites/undeveloped sites (wetland, forest, shrub, rangeland) | 27,100–82,900/31,700–93,000 | Lancellotti et al., 2023 [62] | |
Urugway | Montevideo Harbor (sediment) | 59,000–126,000 (summer) 59,000–135,000 (winter) | Muniz et al., 2004 [63] | |
Brazil | Jurujuba SOund | 5000–213,000 | Baptista et al., 2000 [64] | |
Venezuela | Coral reef sediment | 6000–40,000 | Bastidas et al., 1999 [65] | |
Chile | Southern Fjords | 16,000–22,000 | Ahumada et al., 2015 [66] | |
AFRICA | ||||
Uganda | Kampala and Mbarara districts | 0.034–0.146 (dry season) 0.235–0.322 (wet season) | Sanusi et al., 2024 [155] | |
Malawi | Lake Chilwa: surface water/sediment | BDL–47.83/20,020 | Mussa et al., 2019 [67] | |
Cameroon | Municipal Lake (sediment) | 42,800–142,000 | Ekengele et al., 2008 [68] | |
Egipt | El-Mex Bay | 3690–4900 | Abdallah 2008 [69] | |
Morocco | Sebou Estuary sediments | 51,500 | Cheggour et al., 2005 [70] | |
Nador lagoon | 4000–1,190,000 | Bloundi et al., 2008 [71] | ||
Zambia | Kafue River (sediment) | 12,855 | Pettersson and Ingri 2001 [156] | |
Namibia | sediments of the Gruben River | 10,500.000 | Taylor and Kesterton 2002 [73] | |
Algeria | Tafna Wadi | 10–50 | Benmostefa et al., 2022 [74] | |
Tanzania | Mwanza Gulf of Lake Victoria (sediment) | 26,100 | Kishe and Machiwa 2003 [75] |
3.2. Copper Mobility and Complexation
3.3. Cu Bioaccumulation in Biota and Toxicity
3.4. Bioremediation of Copper Pollution
4. Conclusions and Perspectives
Author Contributions
Funding
Conflicts of Interest
References
- Lindner, J. Global Water Pollution Statistics: Alarming Figures Reflect Environmental Crisis. Available online: https://gitnux.org/water-pollution-statistics/ (accessed on 21 August 2024).
- Remarks by World Bank Group President David Malpass at the UN 2023 Water Conference. Available online: https://www.worldbank.org/en/news/speech/2023/03/22/remarks-president-david-malpass-un-water-conference (accessed on 21 August 2024).
- Lin, L.; Yang, H.; Xu, X. Effects of Water Pollution on Human Health and Disease Heterogeneity: A Review. Front. Environ. Sci. 2022, 10, 880246. [Google Scholar] [CrossRef]
- Khatib, I.; Rychter, P.; Falfushynska, H. Pesticide Pollution: Detrimental Outcomes and Possible Mechanisms of Fish Exposure to Common Organophosphates and Triazines. J. Xenobiotics 2022, 12, 236–265. [Google Scholar] [CrossRef] [PubMed]
- Falfushynska, H.; Kasianchuk, N.; Siemens, E.; Henao, E.; Rzymski, P. A Review of Common Cyanotoxins and Their Effects on Fish. Toxics 2023, 11, 118. [Google Scholar] [CrossRef] [PubMed]
- Stolyar, O.B.; Loumbourdis, N.S.; Falfushinska, H.I.; Romanchuk, L.D. Comparison of Metal Bioavailability in Frogs from Urban and Rural Sites of Western Ukraine. Arch. Environ. Contam. Toxicol. 2008, 54, 107–113. [Google Scholar] [CrossRef]
- Falfushynska, H.; Gnatyshyna, L.; Yurchak, I.; Sokolova, I.; Stoliar, O. The Effects of Zinc Nanooxide on Cellular Stress Responses of the Freshwater Mussels Unio tumidus Are Modulated by Elevated Temperature and Organic Pollutants. Aquat. Toxicol. 2015, 162, 82–93. [Google Scholar] [CrossRef]
- Raj, A.; Prabhakaran, M.; Sivasankar, V.; Boobalan, S.K.; Omine, K.; Sunitha, T.G. Heavy Metal Pollution of River Water and Eco-Friendly Remediation Using Potent Microalgal Species. Water Sci. Eng. 2023, 17, 41–50. [Google Scholar] [CrossRef]
- Zlati, M.L.; Georgescu, L.P.; Iticescu, C.; Ionescu, R.V.; Antohi, V.M. New Approach to Modelling the Impact of Heavy Metals on the European Union’s Water Resources. Int. J. Environ. Res. Public Health 2023, 20, 45. [Google Scholar] [CrossRef]
- Roy, K.; Karim, M.R.; Akter, F.; Islam, M.S.; Ahmed, K.; Rahman, M.; Datta, D.K.; Khan, M.S.A. Hydrochemistry, Water Quality and Land Use Signatures in an Ephemeral Tidal River: Implications in Water Management in the Southwestern Coastal Region of Bangladesh. Appl. Water Sci. 2018, 8, 78. [Google Scholar] [CrossRef]
- Ren, X.; Yu, R.; Kang, J.; Li, X.; Wang, R.; Zhuang, S.; Wang, D.; Zhang, X. Hydrochemical Evaluation of Water Quality and Its Influencing Factors in a Closed Inland Lake Basin of Northern China. Front. Ecol. Evol. 2022, 10, 1005289. [Google Scholar] [CrossRef]
- Huang, C.-W.; Chai, Z.Y.; Yen, P.-L.; How, C.M.; Yu, C.-W.; Chang, C.-H.; Liao, V.H.-C. The Bioavailability and Potential Ecological Risk of Copper and Zinc in River Sediment Are Affected by Seasonal Variation and Spatial Distribution. Aquat. Toxicol. 2020, 227, 105604. [Google Scholar] [CrossRef]
- Boran, M.; Altınok, I. A Review of Heavy Metals in Water, Sediment and Living Organisms in the Black Sea. Turk. J. Fish. Aquat. Sci. 2010, 10, 565–572. [Google Scholar] [CrossRef]
- Kumar, A.; Kumar, V.; Pandita, S.; Singh, S.; Bhardwaj, R.; Varol, M.; Rodrigo-Comino, J. A Global Meta-Analysis of Toxic Metals in Continental Surface Water Bodies. J. Environ. Chem. Eng. 2023, 11, 109964. [Google Scholar] [CrossRef]
- Bouida, L.; Rafatullah, M.; Kerrouche, A.; Qutob, M.; Alosaimi, A.M.; Alorfi, H.S.; Hussein, M.A. A Review on Cadmium and Lead Contamination: Sources, Fate, Mechanism, Health Effects and Remediation Methods. Water 2022, 14, 3432. [Google Scholar] [CrossRef]
- Falfushynska, H. Navigating Environmental Concerns: Assessing the Ecological Footprint of Photovoltaic-Produced Energy. Environments 2024, 11, 140. [Google Scholar] [CrossRef]
- Rhodes, C.J. Endangered Elements, Critical Raw Materials and Conflict Minerals. Sci. Prog. Prog. 2019, 102, 304–350. [Google Scholar] [CrossRef]
- Sverdrup, H.U.; Koca, D.; Ragnarsdóttir, K.V. Peak Metals, Minerals, Energy, Wealth, Food and Population: Urgent Policy Considerations for a Sustainable Society. J. Environ. Sci. Eng. 2013, 2, 189–222. [Google Scholar]
- Zinc 2024. Available online: https://en.wikipedia.org/wiki/Zinc (accessed on 21 August 2024).
- Andarani, P.; Yokota, K.; Inoue, T.; Alimuddin, H.; Nguyen Minh, N. An Assessment of Zinc Fluxes by Analyzing Monthly, Weekday, and Weekend Levels in a River. CLEAN-Soil Air Water 2022, 50, 2100151. [Google Scholar] [CrossRef]
- Hüffmeyer, N.; Klasmeier, J.; Matthies, M. Geo-Referenced Modeling of Zinc Concentrations in the Ruhr River Basin (Germany) Using the Model GREAT-ER. Sci. Total Environ. 2009, 407, 2296–2305. [Google Scholar] [CrossRef]
- Holt, M.S. Sources of Chemical Contaminants and Routes into the Freshwater Environment. Food Chem. Toxicol. 2000, 38, S21–S27. [Google Scholar] [CrossRef]
- Scherer, U.; Fuchs, S.; Behrendt, H.; Hillenbrand, T. Emissions of Heavy Metals into River Basins of Germany. Water Sci. Technol. 2003, 47, 251–257. [Google Scholar] [CrossRef]
- Global Zinc Production to Be Impacted by Scheduled Closures and Capacity Shortage. Min. Technol. 2023. Available online: https://www.mining-technology.com/analyst-comment/global-zinc-production/ (accessed on 21 August 2024).
- Hogstrand, C. 3-Zinc. In Fish Physiology; Wood, C.M., Farrell, A.P., Brauner, C.J., Eds.; Homeostasis and Toxicology of Essential Metals; Academic Press: Cambridge, MA, USA, 2011; Volume 31, pp. 135–200. [Google Scholar]
- Rostek, L.; Pirard, E.; Loibl, A. The Future Availability of Zinc: Potential Contributions from Recycling and Necessary Ones from Mining. Resour. Conserv. Recycl. Adv. 2023, 19, 200166. [Google Scholar] [CrossRef]
- Ruhrverband. (1994–2004). Annual Reports on Ruhr River Quality. Ruhrverband, Essen. [In German]. Available online: https://www.ruhrverband.de/index.php?id=198 (accessed on 21 August 2024).
- Wang, Z.; Hua, P.; Li, R.; Bai, Y.; Fan, G.; Wang, P.; Hu, B.X.; Zhang, J.; Krebs, P. Concentration Decline in Response to Source Shift of Trace Metals in Elbe River, Germany: A Long-Term Trend Analysis during 1998–2016. Environ. Pollut. 2019, 250, 511–519. [Google Scholar] [CrossRef] [PubMed]
- Kluska, M.; Jabłońska, J. Pollution Assessment and Spatial Distribution of Heavy Metals in Surface Waters and Bottom Sediments of the Krzna River (Poland). Water 2024, 16, 1008. [Google Scholar] [CrossRef]
- Zhou, Q.; Yang, N.; Li, Y.; Ren, B.; Ding, X.; Bian, H.; Yao, X. Total Concentrations and Sources of Heavy Metal Pollution in Global River and Lake Water Bodies from 1972 to 2017. Glob. Ecol. Conserv. 2020, 22, e00925. [Google Scholar] [CrossRef]
- Ramani, S.; Dragun, Z.; Kapetanović, D.; Kostov, V.; Jordanova, M.; Erk, M.; Hajrulai-Musliu, Z. Surface Water Characterization of Three Rivers in the Lead/Zinc Mining Region of Northeastern Macedonia. Arch. Environ. Contam. Toxicol. 2014, 66, 514–528. [Google Scholar] [CrossRef]
- Li, X.F.; Wang, P.F.; Feng, C.L.; Liu, D.Q.; Chen, J.K.; Wu, F.C. Acute Toxicity and Hazardous Concentrations of Zinc to Native Freshwater Organisms Under Different pH Values in China. Bull. Environ. Contam. Toxicol. 2019, 103, 120–126. [Google Scholar] [CrossRef] [PubMed]
- Siwek, H.; Włodarczyk, M.; Gibczyńska, M. Concentration of Zinc (Zn) in Water and Bottom Sediments in Small Water Reservoirs Located in Rural Areas. J. Elem. 2012, 17, 4. [Google Scholar] [CrossRef]
- Falfushynska, H.I.; Delahaut, L.; Stolyar, O.B.; Geffard, A.; Biagianti-Risbourg, S. Multi-Biomarkers Approach in Different Organs of Anodonta Cygnea from the Dnister Basin (Ukraine). Arch. Environ. Contam. Toxicol. 2009, 57, 86–95. [Google Scholar] [CrossRef]
- Rzymski, P.; Horyn, O.; Budzyńska, A.; Jurczak, T.; Kokociński, M.; Niedzielski, P.; Klimaszyk, P.; Falfushynska, H. A Report of Cylindrospermopsis Raciborskii and Other Cyanobacteria in the Water Reservoirs of Power Plants in Ukraine. Environ. Sci. Pollut. Res. Int. 2018, 25, 15245–15252. [Google Scholar] [CrossRef]
- Mahdi, A.; Ewadh, H.; Satee, S.; Salman, J.; Rao, P. Comprehensive Study of Heavy Metal Pollution in Surface Water of Guntur Region of Andra Pradesh. In IOP Conference Series: Earth and Environmental Science; IOP Publishing: Bristol, UK, 2022; Volume 1088, p. 012016. [Google Scholar] [CrossRef]
- Niampradit, S.; Kiangkoo, N.; Mingkhwan, R.; Kliengchuay, W.; Worakhunpiset, S.; Limpananont, Y.; Hongsibsong, S.; Inthorn, D.; Tantrakarnapa, K. Occurrence, Distribution, and Ecological Risk Assessment of Heavy Metals in Chao Phraya River, Thailand. Sci. Rep. 2024, 14, 8366. [Google Scholar] [CrossRef]
- Chanpiwat, P.; Sthiannopkao, S. Trace Metal Contamination in Southeast Asian Rivers. APN Sci. Bull. 2013, 3, 6–11. [Google Scholar] [CrossRef]
- Veschasit, O.; Meksumpun, S.; Meksumpun, C. Heavy Metals Contamination in Water and Aquatic Plants in the Tha Chin River, Thailand. Kasetsart J.-Nat. Sci. 2012, 46, 931–943. [Google Scholar]
- Fadlillah, L.N.; Utami, S.; Rachmawati, A.A.; Jayanto, G.D.; Widyastuti, M. Ecological Risk and Source Identifications of Heavy Metals Contamination in the Water and Surface Sediments from Anthropogenic Impacts of Urban River, Indonesia. Heliyon 2023, 9, e15485. [Google Scholar] [CrossRef] [PubMed]
- Razak, M.R.; Aris, A.Z.; Zakaria, N.A.C.; Wee, S.Y.; Ismail, N.A.H. Accumulation and Risk Assessment of Heavy Metals Employing Species Sensitivity Distributions in Linggi River, Negeri Sembilan, Malaysia. Ecotoxicol. Environ. Saf. 2021, 211, 111905. [Google Scholar] [CrossRef]
- Al-Badaii, F.; Shuhaimi-Othman, M. Heavy Metals and Water Quality Assessment Using Multivariate Statistical Techniques and Water Quality Index of the Semenyih River, Peninsular Malaysia. Iran. J. Energy Environ. 2014, 5, 132–145. [Google Scholar] [CrossRef]
- Bazrafshan, E.; Mostafapour, F.; Esmailnejad, M.; Ebrahimzadeh, G.; Mahvi, A. Concentration of Heavy Metals in Surface Water and Sediments of Chah Nimeh Water Reservoir in Sistan and Baluchestan Province, Iran. Desalination Water Treat. 2015, 57, 1–11. [Google Scholar] [CrossRef]
- Liu, X.; Zhang, J.; Huang, X.; Zhang, L.; Yang, C.; Li, E.; Wang, Z. Heavy Metal Distribution and Bioaccumulation Combined with Ecological and Human Health Risk Evaluation in a Typical Urban Plateau Lake, Southwest China. Front. Environ. Sci. 2022, 10, 814678. [Google Scholar] [CrossRef]
- Wang, J.-Z.; Peng, S.-C.; Chen, T.-H.; Zhang, L. Occurrence, Source Identification and Ecological Risk Evaluation of Metal Elements in Surface Sediment: Toward a Comprehensive Understanding of Heavy Metal Pollution in Chaohu Lake, Eastern China. Environ. Sci. Pollut. Res. Int. 2016, 23, 307–314. [Google Scholar] [CrossRef]
- Wang, C.; Wang, K.; Zhou, W.; Li, Y.; Zou, G.; Wang, Z. Occurrence, Risk, and Source of Heavy Metals in Lake Water Columns and Sediment Cores in Jianghan Plain, Central China. Int. J. Environ. Res. Public Health 2023, 20, 3676. [Google Scholar] [CrossRef]
- Li, R.; Tang, X.; Guo, W.; Lin, L.; Zhao, L.; Hu, Y.; Liu, M. Spatiotemporal Distribution Dynamics of Heavy Metals in Water, Sediment, and Zoobenthos in Mainstream Sections of the Middle and Lower Changjiang River. Sci. Total Environ. 2020, 714, 136779. [Google Scholar] [CrossRef]
- Kluska, M.; Jabłońska, J. Variability and Heavy Metal Pollution Levels in Water and Bottom Sediments of the Liwiec and Muchawka Rivers (Poland). Water 2023, 15, 2833. [Google Scholar] [CrossRef]
- Christophoridis, C.; Dedepsidis, D.; Fytianos, K. Occurrence and Distribution of Selected Heavy Metals in the Surface Sediments of Thermaikos Gulf, N. Greece. Assessment Using Pollution Indicators. J. Hazard. Mater. 2009, 168, 1082–1091. [Google Scholar] [CrossRef] [PubMed]
- Karadede, H.; Ünlü, E. Concentrations of Some Heavy Metals in Water, Sediment and Fish Species from the Atatürk Dam Lake (Euphrates), Turkey. Chemosphere 2000, 41, 1371–1376. [Google Scholar] [CrossRef] [PubMed]
- Demirak, A.; Yilmaz, F.; Tuna, A.L.; Ozdemir, N. Heavy Metals in Water, Sediment and Tissues of Leuciscus Cephalus from a Stream in Southwestern Turkey. Chemosphere 2006, 63, 1451–1458. [Google Scholar] [CrossRef]
- Enguix González, A.; Ternero Rodríguez, M.; Jiménez Sá, J.C.; Fernández Espinosa, A.J.; Barragán de la Rosa, F.J. Assessment of Metals in Sediments in a Tributary of Guadalquiver River (Spain). Heavy Metal Partitioning and Relation between the Water and Sediment System. Water Air Soil. Pollut. 2000, 121, 11–29. [Google Scholar] [CrossRef]
- Galán, E.; Gómez-Ariza, J.L.; González, I.; Fernández-Caliani, J.C.; Morales, E.; Giráldez, I. Heavy Metal Partitioning in River Sediments Severely Polluted by Acid Mine Drainage in the Iberian Pyrite Belt. Appl. Geochem. 2003, 18, 409–421. [Google Scholar] [CrossRef]
- Audry, S.; Schäfer, J.; Blanc, G.; Jouanneau, J.-M. Fifty-Year Sedimentary Record of Heavy Metal Pollution (Cd, Zn, Cu, Pb) in the Lot River Reservoirs (France). Environ. Pollut. 2004, 132, 413–426. [Google Scholar] [CrossRef]
- Müller, J.; Ruppert, H.; Muramatsu, Y.; Schneider, J. Reservoir Sediments-A Witness of Mining and Industrial Development (Malter Reservoir, Eastern Erzgebirge, Germany). Environ. Geol. 2000, 39, 1341–1351. [Google Scholar] [CrossRef]
- Yang, H.; Rose, N.L.; Battarbee, R.W. Distribution of Some Trace Metals in Lochnagar, a Scottish Mountain Lake Ecosystem and Its Catchment. Sci. Total Environ. 2002, 285, 197–208. [Google Scholar] [CrossRef]
- Gunten, H.; Sturm, M.; Moser, R. 200Year Record of Metals in Lake Sediments and Natural Background Concentrations. Environ. Sci. Technol.-Environ. SCI. Technol. 1997, 31, 2193–2197. [Google Scholar] [CrossRef]
- Van Den Berg, G.A.; Loch, J.P.G.; Van Der Heijdt, L.M.; Zwolsman, J.J.G. Mobilisation of Heavy Metals in Contaminated Sediments in the River Meuse, The Netherlands|Hydrotheek. Available online: https://library.wur.nl/WebQuery/hydrotheek/1022316 (accessed on 21 August 2024).
- Ponce, V. Evaluación de los Niveles de Metales Pesados e Hidrocarburos Aromáticos Polinucleares en la Zona Costera del Golfo de México. Tesis de Maestría, Universidad Nacional Autónoma de México, México City, México, 1995; 159p. [Google Scholar]
- Rosales-Hoz, L.; Carranza-Edwards, A.; Mendez-Jaime, C.; Monreal-Gómez, M.A. Metals in Shelf Sediments and Their Association with Continental Discharges in a Tropical Zone. Mar. Freshw. Res. 1999, 50, 189–196. [Google Scholar] [CrossRef]
- Cantillo, A.Y.; O’connor, T.P. Trace Element Contaminants in Sediments From the Noaa National Status and Trends Programme Compared to Data From Throughout the World. Chem. Ecol. 1992, 7, 31–50. [Google Scholar] [CrossRef]
- Lancellotti, B.V.; Hensley, D.A.; Stryker, R. Detection of Heavy Metals and VOCs in Streambed Sediment Indicates Anthropogenic Impact on Intermittent Streams of the U.S. Virgin Islands. Sci. Rep. 2023, 13, 17238. [Google Scholar] [CrossRef] [PubMed]
- Muniz, P.; Danulat, E.; Yannicelli, B.; García-Alonso, J.; Medina, G.; Bícego, M.C. Assessment of Contamination by Heavy Metals and Petroleum Hydrocarbons in Sediments of Montevideo Harbour (Uruguay). Environ. Int. 2004, 29, 1019–1028. [Google Scholar] [CrossRef]
- Baptista Neto, J.A.; Smith, B.J.; McAllister, J.J. Heavy Metal Concentrations in Surface Sediments in a Nearshore Environment, Jurujuba Sound, Southeast Brazil. Environ. Environ. Pollut. 2000, 109, 1–9. [Google Scholar] [CrossRef] [PubMed]
- Bastidas, C. Sedimentation Rates and Metal Content of Sediments in a Venezuelan Coral Reef. Mar. Pollut. Bull. 1999, 38, 16–24. [Google Scholar] [CrossRef]
- Ahumada, R.; González, E.; Díaz, C.; Silva, N. Characterization of Baker Fjord Region through Its Heavy Metal Content on Sediments (Central Chilean Patagonia). Lat. Am. J. Aquat. Res. 2015, 43, 581–587. [Google Scholar] [CrossRef]
- Mussa, C.; Biswick, T.; Changadeya, W.; Junginger, A.; Vunain, E. Levels and Spatial Distribution of Heavy Metals in Lake Chilwa Catchment, Southern Malawi. ChemSearch J. 2019, 10, 66–73. [Google Scholar]
- Léopold, E.; Auguste, O.; Ngatcha, N.; Ekodeck, G.; Lape, M. Metals Pollution in Freshly Deposited Sediments from River Mingoa, Main Tributary to the Municipal Lake of Yaounde, Cameroon. Geosci. J. 2008, 12, 337–347. [Google Scholar] [CrossRef]
- Abdallah, M.; Abdallah, M. Trace Metal Behavior in Mediterranean-Climate Coastal Bay: El-Mex Bay, Egypt and Its Coastal Environment. Glob. J. Environ. Res. 2008, 2, 23–29. [Google Scholar]
- Cheggour, M.; Chafik, A.; Fisher, N.S.; Benbrahim, S. Metal Concentrations in Sediments and Clams in Four Moroccan Estuaries. Mar. Environ. Res. 2005, 59, 119–137. [Google Scholar] [CrossRef] [PubMed]
- Bloundi, M.; Duplay, J.; Quaranta, G. Heavy Metal Contamination of Coastal Lagoon Sediments by Anthropogenic Activities: The Case of Nador (East Morocco). Environ. Geol. 2008, 56, 833–843. [Google Scholar] [CrossRef]
- von der Heyden, C.J.; New, M.G. Sediment Chemistry: A History of Mine Contaminant Remediation and an Assessment of Processes and Pollution Potential. J. Geochem. Explor. 2004, 82, 35–57. [Google Scholar] [CrossRef]
- Taylor, M.P.; Kesterton, R.G.H. Heavy Metal Contamination of an Arid River Environment: Gruben River, Namibia. Geomorphology 2002, 42, 311–327. [Google Scholar] [CrossRef]
- Benmostefa, S.; Youcef, N.; Hadjel, H. Monitoring and Evaluation of Heavy Metal Pollution in Surface Water of Tafna Wadi (Algeria). Arab. J. Geosci. 2022, 15, 1421. [Google Scholar] [CrossRef]
- Kishe, M.A.; Machiwa, J.F. Distribution of Heavy Metals in Sediments of Mwanza Gulf of Lake Victoria, Tanzania. Environ. Int. 2003, 28, 619–625. [Google Scholar] [CrossRef]
- Environmental Quality Standard. Zinc. Available online: https://webetox.uba.de/webETOX/public/basics/literatur/download.do?id=30 (accessed on 21 August 2024).
- Tawfik, N.A.I.; El-Bakary, Z.A.; Abd El-Wakeil, K.F. Determination of Caffeine in Treated Wastewater Discharged in the Nile River with Emphasis on the Effect of Zinc and Physicochemical Factors. Environ. Sci. Pollut. Res. 2024, 31, 28124–28138. [Google Scholar] [CrossRef] [PubMed]
- Ma, L.; Li, Y.; Abuduwaili, J.; Abdyzhapar uulu, S.; Liu, W. Hydrochemical Composition and Potentially Toxic Elements in the Kyrgyzstan Portion of the Transboundary Chu-Talas River Basin, Central Asia. Sci. Rep. 2020, 10, 14972. [Google Scholar] [CrossRef] [PubMed]
- Fu, Z.; Wu, F.; Chen, L.; Xu, B.; Feng, C.; Bai, Y.; Liao, H.; Sun, S.; Giesy, J.P.; Guo, W. Copper and Zinc, but Not Other Priority Toxic Metals, Pose Risks to Native Aquatic Species in a Large Urban Lake in Eastern China. Environ. Pollut. 2016, 219, 1069–1076. [Google Scholar] [CrossRef]
- Liu, D.Q.; Li, X.F.; Fu, W.Q.; Huang, C.H.; Yang, H.; Feng, C.L. Water quality criteria of zinc for the protection of freshwater organisms and its ecological risk in China. Environ. Eng. 2017, 35, 18–23. (In Chinese). Available online: http://ouci.dntb.gov.ua/en/works/loZQj2Q4/ (accessed on 21 August 2024).
- Zhang, W.; Feng, H.; Chang, J.; Qu, J.; Xie, H.; Yu, L. Heavy Metal Contamination in Surface Sediments of Yangtze River Intertidal Zone: An Assessment from Different Indexes. Environ. Pollut. 2009, 157, 1533–1543. [Google Scholar] [CrossRef] [PubMed]
- Krężel, A.; Maret, W. The Bioinorganic Chemistry of Mammalian Metallothioneins. Chem. Rev. 2021, 121, 14594–14648. [Google Scholar] [CrossRef] [PubMed]
- van den Berg, C.M.G.; Dharmvanij, S. Organic Complexation of Zinc in Estuarine Interstitial and Surface Water Samples. Limnol. Oceanogr. 1984, 29, 1025–1036. [Google Scholar] [CrossRef]
- Gao, L.; Li, R.; Liang, Z.; Yang, C.; Yang, Z.; Hou, L.; Ouyang, L.; Zhao, X.; Chen, J.; Zhao, P. Remobilization Characteristics and Diffusion Kinetic Processes of Sediment Zinc (Zn) in a Tidal Reach of the Pearl River Estuary, South China. J. Hazard. Mater. 2023, 457, 131692. [Google Scholar] [CrossRef] [PubMed]
- Krok, B.; Mohammadian, S.; Noll, H.M.; Surau, C.; Markwort, S.; Fritzsche, A.; Nachev, M.; Sures, B.; Meckenstock, R.U. Remediation of Zinc-Contaminated Groundwater by Iron Oxide in Situ Adsorption Barriers—From Lab to the Field. Sci. Total Environ. 2022, 807, 151066. [Google Scholar] [CrossRef]
- Meers, E.; Unamuno, V.R.; Du Laing, G.; Vangronsveld, J.; Vanbroekhoven, K.; Samson, R.; Diels, L.; Geebelen, W.; Ruttens, A.; Vandegehuchte, M.; et al. Zn in the Soil Solution of Unpolluted and Polluted Soils as Affected by Soil Characteristics. Geoderma 2006, 136, 107–119. [Google Scholar] [CrossRef]
- Stead-Dexter, K.; Ward, N.I. Mobility of Heavy Metals within Freshwater Sediments Affected by Motorway Stormwater. Sci. Total Environ. 2004, 334–335, 271–277. [Google Scholar] [CrossRef]
- Małecki, J.J.; Kadzikiewicz-Schoeneich, M.; Szostakiewicz-Hołownia, M. Concentration and Mobility of Copper and Zinc in the Hypergenic Zone of a Highly Urbanized Area. Environ. Earth Sci. 2015, 75, 24. [Google Scholar] [CrossRef]
- Tessier, A.; Carignan, R.; Dubreuil, B.; Rapin, F. Partitioning of Zinc between the Water Column and the Oxic Sediments in Lakes. Geochim. Cosmochim. Acta 1989, 53, 1511–1522. [Google Scholar] [CrossRef]
- Walaszek, M.; Del Nero, M.; Bois, P.; Ribstein, L.; Courson, O.; Wanko, A.; Laurent, J. Sorption Behavior of Copper, Lead and Zinc by a Constructed Wetland Treating Urban Stormwater. Appl. Geochem. 2018, 97, 167–180. [Google Scholar] [CrossRef]
- Yu, P.; Cui, H.; Bai, J.; Chen, G.; Liu, H.; Liu, Z.; Xia, J. Adsorption and Desorption of Cu, Zn, Pb, and Cd on Surface Sediments from a Shallow Lake, North China. Ecohydrol. Hydrobiol. 2022. [Google Scholar] [CrossRef]
- Cheng, T.; Allen, H.E. Comparison of Zinc Complexation Properties of Dissolved Natural Organic Matter from Different Surface Waters. J. Environ. Environ. Manag. 2006, 80, 222–229. [Google Scholar] [CrossRef]
- Authman, M.; Zaki, M.; Khallaf, E.; Abbas, H. Use of Fish as Bio-Indicator of the Effects of Heavy Metals Pollution. J. Aquac. Res. Dev. 2015, 6, 328. [Google Scholar] [CrossRef]
- Glover, C.N.; Bury, N.R.; Hogstrand, C. Zinc Uptake across the Apical Membrane of Freshwater Rainbow Trout Intestine Is Mediated by High Affinity, Low Affinity, and Histidine-Facilitated Pathways. Biochim. Biophys. Acta 2003, 1614, 211–219. [Google Scholar] [CrossRef]
- Abdel-Tawwab, M.; El-Sayed, G.O.; Shady, S.H. Growth, Biochemical Variables, and Zinc Bioaccumulation in Nile tilapia, Oreochromis niloticus (L.) as Affected by Water-Born Zinc Toxicity and Exposure Period. Int. Aquat. Res. 2016, 8, 197–206. [Google Scholar] [CrossRef]
- Murugan, S.S.; Karuppasamy, R.; Poongodi, K.; Puvaneswari, S. Bioaccumulation Pattern of Zinc in Freshwater Fish Channa Punctatus (Bloch). Turk. J. Fish. Aquat. Sci. 2008, 8, 55–59. [Google Scholar]
- Giardina, A.; Larson, S.E.; Wisner, B.; Wheeler, J.; Chao, M. Long-Term and Acute Effects of Zinc Contamination of a Stream on Fish Mortality and Physiology. Environ. Toxicol. Chem. 2009, 28, 287–295. [Google Scholar] [CrossRef] [PubMed]
- Delahaut, V.; Rašković, B.; Salvado, M.S.; Bervoets, L.; Blust, R.; De Boeck, G. Toxicity and Bioaccumulation of Cadmium, Copper and Zinc in a Direct Comparison at Equitoxic Concentrations in Common Carp (Cyprinus carpio) Juveniles. PLoS ONE 2020, 15, e0220485. [Google Scholar] [CrossRef]
- Pillet, M.; Castaldo, G.; Rodgers, E.M.; Poleksić, V.; Rašković, B.; Bervoets, L.; Blust, R.; De Boeck, G. Physiological Performance of Common Carp (Cyprinus carpio, L., 1758) Exposed to a Sublethal Copper/Zinc/Cadmium Mixture. Comp. Biochem. Physiol. C Toxicol. Pharmacol. 2021, 242, 108954. [Google Scholar] [CrossRef]
- Falfushynska, H.I.; Gnatyshyna, L.L.; Stoliar, O.B.; Nam, Y.K. Various Responses to Copper and Manganese Exposure of Carassius Auratus Gibelio from Two Populations. Comp. Biochem. Physiol. C Toxicol. Pharmacol. 2011, 154, 242–253. [Google Scholar] [CrossRef]
- Duxbury, C.V.; Grace, K.A.; Poponi, A.; Auter, T. Copper and Zinc Accumulation by a Transplanted Bivalve, Elliptio Buckleyi, in Freshwater Systems in Central Florida. J. Freshw. Ecol. 2005, 20, 661–669. [Google Scholar] [CrossRef]
- Gnatyshyna, L.; Falfushynska, H.; Stoliar, O.; Dallinger, R. Preliminary Study of Multiple Stress Response Reactions in the Pond Snail Lymnaea Stagnalis Exposed to Trace Metals and a Thiocarbamate Fungicide at Environmentally Relevant Concentrations. Arch. Environ. Environ. Contam. Toxicol. 2020, 79, 89–100. [Google Scholar] [CrossRef]
- Gagné, F.; Auclair, J.; Turcotte, P.; Gagnon, C.; Peyrot, C.; Wilkinson, K. The Influence of Surface Waters on the Bioavailability and Toxicity of Zinc Oxide Nanoparticles in Freshwater Mussels. Comp. Biochem. Physiol. Part C Toxicol. Pharmacol. 2019, 219, 1–11. [Google Scholar] [CrossRef]
- Falfushynska, H.I.; Gnatyshyna, L.L.; Stoliar, O.B. Effect of in Situ Exposure History on the Molecular Responses of Freshwater Bivalve Anodonta Anatina (Unionidae) to Trace Metals. Ecotoxicol. Environ. Environ. Saf. 2013, 89, 73–83. [Google Scholar] [CrossRef] [PubMed]
- Daka, E.R.; Ifidi, I.; Braide, S.A. Accumulation of Heavy Metals from Single and Mixed Metal Solutions by the Gastropod Mollusc Tympanotonus Fuscatus Linnaeus from a Niger Delta Estuary: Implications for Biomonitoring. Afr. J. Biotechnol. 2006, 5. Available online: https://www.ajol.info/index.php/ajb/article/view/55920 (accessed on 21 August 2024).
- Abdel Gawad, S.S. Concentrations of Heavy Metals in Water, Sediment and Mollusk Gastropod, Lanistes Carinatus from Lake Manzala, Egypt. Egypt. J. Aquat. Res. 2018, 44, 77–82. [Google Scholar] [CrossRef]
- Andres, S.; Ribeyre, F.; Tourencq, J.N.; Boudou, A. Interspecific Comparison of Cadmium and Zinc Contamination in the Organs of Four Fish Species along a Polymetallic Pollution Gradient (Lot River, France). Sci. Total Environ. 2000, 248, 11–25. [Google Scholar] [CrossRef]
- Seymore, T.; du Preez, H.H.; van Vuren, J.H.J. Concentrations of Zinc in Barbus Marequensis from the Lower Olifants River, Mpumalanga, South Africa. Hydrobiologia 1996, 332, 141–150. [Google Scholar] [CrossRef]
- McGeer, J.C.; Brix, K.V.; Skeaff, J.M.; DeForest, D.K.; Brigham, S.I.; Adams, W.J.; Green, A. Inverse Relationship between Bioconcentration Factor and Exposure Concentration for Metals: Implications for Hazard Assessment of Metals in the Aquatic Environment. Environ. Toxicol. Chem. 2003, 22, 1017–1037. [Google Scholar] [CrossRef]
- Falfushynska, H.I.; Stoliar, O.B. Function of Metallothioneins in Carp Cyprinus carpio from Two Field Sites in Western Ukraine. Ecotoxicol. Environ. Saf. 2009, 72, 1425–1432. [Google Scholar] [CrossRef]
- Svecevičius, G. Fish Avoidance Response to Heavy Metals and Their Mixtures. Acta Zool. Litu. 1999, 9, 103–113. [Google Scholar] [CrossRef]
- Tao, S.; Li, H.; Liu, C.; Lam, K.C. Fish Uptake of Inorganic and Mucus Complexes of Lead. Ecotoxicol. Environ. Saf. 2000, 46, 174–180. [Google Scholar] [CrossRef]
- Davis, S.R.; Cousins, R.J. Metallothionein Expression in Animals: A Physiological Perspective on Function. J. Nutr. 2000, 130, 1085–1088. [Google Scholar] [CrossRef]
- Baykan, U.; Atli, G.; Canli, M. The Effects of Temperature and Metal Exposures on the Profiles of Metallothionein-like Proteins in Oreochromis Niloticus. Environ. Toxicol. Pharmacol. 2007, 23, 33–38. [Google Scholar] [CrossRef]
- Baudrimont, M.; Andrès, S.; Metivaud, J.; Lapaquellerie, Y.; Ribeyre, F.; Maillet, N.; Latouche, C.; Boudou, A. Field Transplantation of the Freshwater Bivalve Corbicula Fluminea along a Polymetallic Contamination Gradient (River Lot, France): II. Metallothionein Response to Metal Exposure. Environ. Toxicol. Chem. 1999, 18, 2472–2477. [Google Scholar] [CrossRef]
- Eddy, F.B.; Fraser, J.E. Sialic Acid and Mucus Production in Rainbow Trout (Salmo Gairdneri Richardson) in Response to Zinc and Seawater. Comp. Biochem. Physiol. Part C Comp. Pharmacol. 1982, 73, 357–359. [Google Scholar] [CrossRef] [PubMed]
- Xia, Y.; Tsim, K.W.K.; Wang, W.-X. How Fish Cells Responded to Zinc Challenges: Insights from Bioimaging. Sci. Total Environ. 2023, 875, 162538. [Google Scholar] [CrossRef]
- Ngo, H.T.T.; Nguyen, T.D.; Nguyen, T.T.H.; Le, T.T.; Nguyen, D.Q. Adverse Effects of Toxic Metal Pollution in Rivers on the Physiological Health of Fish. Toxics 2022, 10, 528. [Google Scholar] [CrossRef] [PubMed]
- Awan, B.; Sabeen, M.; Shaheen, S.; Mahmood, Q.; Ebadi, A.; Toughani, M. Phytoremediation of Zinc Contaminated Water by Marigold (Tagetes minuta L). Cent. Asian J. Environ. Sci. Technol. Innov. 2020, 1, 150–158. [Google Scholar] [CrossRef]
- Nur, M.; Nasir, M.; Irfandi, R.; Yani, A.; Fauziah, S.; Danur, R.; Raya, I.; Fudholi, A.; Author, C. Phytoremediation of Zinc, Copper, and Lead Using Ipomoea Aquatica in Water Contaminants. Int. J. Des. Nat. Ecodyn. 2023, 17, 170507. [Google Scholar] [CrossRef]
- Augustynowicz, J.; Tokarz, K.; Baran, A.; Płachno, B.J. Phytoremediation of Water Polluted by Thallium, Cadmium, Zinc, and Lead with the Use of Macrophyte Callitriche Cophocarpa. Arch. Environ. Contam. Toxicol. 2014, 66, 572–581. [Google Scholar] [CrossRef] [PubMed]
- Maksymowicz, P.; Samecka-Cymerman, A.; Rajsz, A.; Wojtuń, B.; Rudecki, A.; Lenarcik, M.; Kempers, A.J. Metals in Callitriche Cophocarpa from Small Rivers with Various Levels of Pollution in SW Poland. Environ. Sci. Pollut. Res. Int. 2023, 30, 97888–97899. [Google Scholar] [CrossRef]
- Wei, Z.; Gu, H.; Van Le, Q.; Peng, W.; Lam, S.S.; Yang, Y.; Li, C.; Sonne, C. Perspectives on Phytoremediation of Zinc Pollution in Air, Water and Soil. Sustain. Chem. Pharm. 2021, 24, 100550. [Google Scholar] [CrossRef]
- Pagnucco, G.; Overfield, D.; Chamlee, Y.; Shuler, C.; Kassem, A.; Opara, S.; Najaf, H.; Abbas, L.; Coutinho, O.; Fortuna, A.; et al. Metal Tolerance and Biosorption Capacities of Bacterial Strains Isolated from an Urban Watershed. Front. Microbiol. 2023, 14, 1278886. [Google Scholar] [CrossRef] [PubMed]
- Khan, I.; Awan, S.A.; Rizwan, M.; Ali, S.; Hassan, M.J.; Brestic, M.; Zhang, X.; Huang, L. Effects of Silicon on Heavy Metal Uptake at the Soil-Plant Interphase: A Review. Ecotoxicol. Environ. Saf. 2021, 222, 112510. [Google Scholar] [CrossRef]
- Reddy, K.; Chirakkara, R.; Ribeiro, L. Synergistic Co-Contaminant Effects on Phytoremediation of Polluted Soils. Indian. Geotech. J. 2023, 54, 315–328. [Google Scholar] [CrossRef]
- Arnold, R.E.; Hodson, M.E.; Comber, S. Effect of Organic Complexation on the Toxicity of Cu to the Earthworm Eisenia Fetida. Appl. Geochem. 2007, 22, 2397–2405. [Google Scholar] [CrossRef]
- Barros, F.; Sousa, F.; Cavalcante, R.; Carvalho, T.; Dias, F.; Queiroz, D.; Vasconcellos, L.; do Nascimento, R. Removal of Copper, Nickel and Zinc Ions from Aqueous Solution by Chitosan-8-Hydroxyquinoline Beads. CLEAN–Soil. Air Water 2008, 36, 292–298. [Google Scholar] [CrossRef]
- Benavente, M.; Moreno, L.; Martinez, J. Sorption of Heavy Metals from Gold Mining Wastewater Using Chitosan. J. Taiwan Inst. Chem. Eng. 2011, 42, 976–988. [Google Scholar] [CrossRef]
- Tripathi, M.; Singh, P.; Singh, R.; Bala, S.; Pathak, N.; Singh, S.; Chauhan, R.S.; Singh, P.K. Microbial Biosorbent for Remediation of Dyes and Heavy Metals Pollution: A Green Strategy for Sustainable Environment. Front. Microbiol. 2023, 14, 1168954. [Google Scholar] [CrossRef]
- Ahmady-Asbchin, S. Biosorption of Zn (II) by Pseudomonas Aeruginosa Isolated from a Site Contaminated with Petroleum. Desalination Water Treat. 2015, 54, 3372–3379. [Google Scholar]
- Mwandira, W.; Nakashima, K.; Kawasaki, S.; Arabelo, A.; Banda, K.; Nyambe, I.; Chirwa, M.; Ito, M.; Sato, T.; Igarashi, T.; et al. Biosorption of Pb (II) and Zn (II) from Aqueous Solution by Oceanobacillus Profundus Isolated from an Abandoned Mine. Sci. Rep. 2020, 10, 21189. [Google Scholar] [CrossRef] [PubMed]
- Rouibah, K.; Ferkous, H.; Delimi, A.; Himeur, T.; Benamira, M.; Zighed, M.; Darwish, A.S.; Lemaoui, T.; Yadav, K.K.; Bhutto, J.K.; et al. Biosorption of Zinc (II) from Synthetic Wastewater by Using Inula Viscosa Leaves as a Low-Cost Biosorbent: Experimental and Molecular Modeling Studies. J. Environ. Manag. 2023, 326, 116742. [Google Scholar] [CrossRef]
- Comber, S.; Deviller, G.; Wilson, I.; Peters, A.; Merrington, G.; Borrelli, P.; Baken, S. Sources of Copper into the European Aquatic Environment. Integr. Environ. Assess. Manag. 2023, 19, 1031–1047. [Google Scholar] [CrossRef]
- Dendievel, A.-M.; Grosbois, C.; Ayrault, S.; Evrard, O.; Coynel, A.; Debret, M.; Gardes, T.; Euzen, C.; Schmitt, L.; Chabaux, F.; et al. Key Factors Influencing Metal Concentrations in Sediments along Western European Rivers: A Long-Term Monitoring Study (1945–2020). Sci. Total Environ. 2022, 805, 149778. [Google Scholar] [CrossRef]
- Frankowski, M.; Sojka, M.; Zioła-Frankowska, A.; Siepak, M.; Murat-Błażejewska, S. Distribution of heavy metals in the Mała Wełna River system (western Poland). Oceanol. Hydrobiol. Stud. 2009, 38, 51–61. [Google Scholar] [CrossRef]
- Helios Rybicka, E.; Adamiec, E.; Aleksander-Kwaterczak, U. Distribution of Trace Metals in the Odra River System: Water–Suspended Matter–Sediments. Limnologica 2005, 35, 185–198. [Google Scholar] [CrossRef]
- Sobczyński, T.; Kaźmierczak, J.; Zioła, A. The effect of depression sink on a accumulation of heavy metals in bottom sediments of old riverbeds In the range of its influence. Pol. J. Environ. Stud. 2004, 13 (Suppl. IV), 101–105. [Google Scholar]
- Vinot, I.; Pihan, J.C. Circulation of Copper in the Biotic Compartments of a Freshwater Dammed Reservoir. Environ. Pollut. 2005, 133, 169–182. [Google Scholar] [CrossRef]
- Hydrological Investigations. Atlas HA-686. Available online: https://dggs.alaska.gov/webpubs/usgs/ha/oversized/ha-0686sht03.pdf (accessed on 29 August 2024).
- Puglis, H.J.; Farag, A.M.; Mebane, C.A. Copper Concentrations in the Upper Columbia River as a Limiting Factor in White Sturgeon Recruitment and Recovery. Integr. Environ. Assess. Manag. 2020, 16, 378–391. [Google Scholar] [CrossRef]
- British Columbia Ministry of Environment and Climate Change Strategy. 2021. British Columbia Approved Water Quality Guidelines: Aquatic Life, Wildlife & Agriculture-Guideline Summary. Water Quality Guideline Series, WQG-20. Prov. B.C., Victoria B.C. Available online: https://www2.gov.bc.ca/assets/gov/environment/air-land-water/water/waterquality/water-quality-guidelines/approved-wqgs/copper/bc_copper_wqg_aquatic_life_technical_report.pdf (accessed on 22 August 2024).
- Water Quality Regulations. Available online: https://www.nema.go.ke/images/Docs/water/water_quality_regulations.pdf (accessed on 29 August 2024).
- Ideriah, T.J.K.; David-Omiema, S.; Ogbonna, D.N. Distribution of Heavy Metals in Water and Sediment along Abonnema Shoreline, Nigeria. Resour. Environ. 2012, 2, 33–40. [Google Scholar]
- Fernández-Calviño, D.; Rodríguez-Suárez, J.; López-Periago, J.; Arias-Estévez, M.; Simal-Gandara, J. Copper Content of Soils and River Sediments in a Winegrowing Area, and Its Distribution among Soil or Sediment Components. Geoderma 2008, 145, 91–97. [Google Scholar] [CrossRef]
- Available online: https://www.ospar.org/documents?V=35698#:~:text=the%20levels%20of%20Cu%20in,of%2033%20mg%20kg%2D1 (accessed on 21 August 2024).
- Hoang, H.-G.; Lin, C.; Tran, H.; Chiang, C.-F.; Bui, X.-T.; Cheruiyot, N.; Shern, C.-C.; Lee, C.-W. Heavy Metal Contamination Trends in Surface Water and Sediments of a River in a Highly-Industrialized Region. Environ. Technol. Innov. 2020, 20, 101043. [Google Scholar] [CrossRef]
- Owens, P.N.; Petticrew, E.L.; Albers, S.J.; French, T.D.; Granger, B.; Laval, B.; Lindgren, J.; Sussbauer, R.; Vagle, S. Annual Pulses of Copper-Enriched Sediment in a North American River Downstream of a Large Lake Following the Catastrophic Failure of a Mine Tailings Storage Facility. Sci. Total Environ. 2023, 856, 158927. [Google Scholar] [CrossRef]
- Mutia, T.; Virani, M.; Moturi, W.; Muyela, B.; Mavura, W.; Lalah, J. Copper, Lead and Cadmium Concentrations in Surface Water, Sediment and Fish, C. Carpio, Samples from Lake Naivasha: Effect of Recent Anthropogenic Activities. Environ. Earth Sci. 2012, 67, 1121–1130. [Google Scholar] [CrossRef]
- Edokpayi, J.; Odiyo, J.; Popoola, O.; Msagati, T.A.M. Evaluation of Temporary Seasonal Variation of Heavy Metals and Their Potential Ecological Risk in Nzhelele River, South Africa. Open Chem. 2017, 15, 272–282. [Google Scholar] [CrossRef]
- Mohajane, C.; Manjoro, M. Sediment-Associated Heavy Metal Contamination and Potential Ecological Risk along an Urban River in South Africa. Heliyon 2022, 8, e12499. [Google Scholar] [CrossRef]
- Villanueva, R. Evaluación de Metales Pesados En El Área de Las Plataformas Petroleras de La Bahía de Campeche. Tesis de Maestría, Universidad Nacional Autónoma de México, Mazatlán, Sinaloa, México, 2000; 134p. [Google Scholar]
- Macías-Zamora, J.V.; Villaescusa-Celaya, J.A.; Muñoz-Barbosa, A.; Gold-Bouchot, G. Trace Metals in Sediment Cores from the Campeche Shelf, Gulf of Mexico. Environ. Pollut. 1999, 104, 69–77. [Google Scholar] [CrossRef]
- Sadiq, M. Toxic Metal Chemistry in Marine Environments|Muhammad Sadiq|Taylor. Available online: https://www.taylorfrancis.com/books/mono/10.1201/9781003210214/toxic-metal-chemistry-marine-environments-muhammad-sadiq (accessed on 22 August 2024).
- Sanusi, I.O.; Olutona, G.O.; Wawata, I.G.; Onohuean, H. Heavy Metals Pollution, Distribution and Associated Human Health Risks in Groundwater and Surface Water: A Case of Kampala and Mbarara Districts, Uganda. Discov. Water 2024, 4, 27. [Google Scholar] [CrossRef]
- Pettersson, U.; Ingri, J. The Geochemistry of Co and Cu in the Kafue River as It Drains the Copperbelt Mining Area, Zambia. Chem. Geol. 2001, 177, 399–414. [Google Scholar] [CrossRef]
- Miranda, L.S.; Wijesiri, B.; Ayoko, G.A.; Egodawatta, P.; Goonetilleke, A. Water-Sediment Interactions and Mobility of Heavy Metals in Aquatic Environments. Water Res. 2021, 202, 117386. [Google Scholar] [CrossRef]
- Ma, X.; Liu, L.; Fang, Y.; Sun, X. The Adsorption Characteristics of Cu(II) and Zn(II) on the Sediments at the Mouth of a Typical Urban Polluted River in Dianchi Lake: Taking Xinhe as an Example. Sci. Rep. 2021, 11, 17067. [Google Scholar] [CrossRef]
- Young, T.C.; DePinto, J.V.; Kipp, T.W. Adsorption and Desorption of Zn, Cu, and Cr by Sediments from the Raisin River (Michigan). J. Great Lakes Res. 1987, 13, 353–366. [Google Scholar] [CrossRef]
- Gardner, M.; Dixon, E.; Comber, S. Copper Complexation in English Rivers. Chem. Speciat. Bioavailab. 2000, 12, 1–8. [Google Scholar] [CrossRef]
- Xue, H.; Oestreich, A.; Kistler, D.; Sigg, L. Free Cupric Ion Concentrations and Cu Complexation in Selected Swiss Lakes and Rivers. Aquat. Sci. 1996, 58, 69–87. [Google Scholar] [CrossRef]
- Nixon, R.L.; Peña, M.A.; Taves, R.; Janssen, D.J.; Cullen, J.T.; Ross, A.R.S. Evidence for the Production of Copper-Complexing Ligands by Marine Phytoplankton in the Subarctic Northeast Pacific. Mar. Chem. 2021, 237, 104034. [Google Scholar] [CrossRef]
- Leal, M.F.C.; Van Den Berg, C.M.G. Evidence for Strong Copper(I) Complexation by Organic Ligands in Seawater. Aquat. Geochem. 1998, 4, 49–75. [Google Scholar] [CrossRef]
- Paul, S.A.L.; Zitoun, R.; Noowong, A.; Manirajah, M.; Koschinsky, A. Copper-Binding Ligands in Deep-Sea Pore Waters of the Pacific Ocean and Potential Impacts of Polymetallic Nodule Mining on the Copper Cycle. Sci. Rep. 2021, 11, 18425. [Google Scholar] [CrossRef]
- Shotyk, W. Natural and Anthropogenic Sources of Copper to Organic Soils: A Global, Geochemical Perspective. Can. J. Soil Sci. 2020, 100, 516–536. [Google Scholar] [CrossRef]
- Kugler, A.; Brigmon, R.L.; Friedman, A.; Coutelot, F.M.; Polson, S.W.; Seaman, J.C.; Simpson, W. Bioremediation of Copper in Sediments from a Constructed Wetland Ex Situ with the Novel Bacterium Cupriavidus Basilensis SRS. Sci. Rep. 2022, 12, 17615. [Google Scholar] [CrossRef]
- Padrilah, S.; Sabullah, M.; Shukor, Y.; Yasid, N.; Shamaan, N.A.; Ahmad, S.A. Toxicity Effects of Fish Histopathology on Copper Accumulation. Pertanika J. Trop. Agric. Sci. 2018, 41, 519–540. [Google Scholar]
- Mert, R.; Alaş, A.; Bulut, S.; Özcan, M.M. Determination of Heavy Metal Contents in Some Freshwater Fishes. Environ. Monit. Assess. 2014, 186, 8017–8022. [Google Scholar] [CrossRef]
- Sabullah, M.; Shukor, Y.; Sulaiman, M.; Shamaan, N.A.; Syed, M.; Khalid, A.; Ahmad, S.A. The Effect of Copper on the Ultrastructure of Puntius Javanicus Hepatocyte. Aust. J. Basic Appl. Sci. 2014, 8, 245–251. [Google Scholar]
- El-Moselhy, K.M.; Othman, A.I.; Abd El-Azem, H.; El-Metwally, M.E.A. Bioaccumulation of Heavy Metals in Some Tissues of Fish in the Red Sea, Egypt. Egypt. J. Basic Appl. Sci. 2014, 1, 97–105. [Google Scholar] [CrossRef]
- Kiczorowska, B.; Samolińska, W.; Grela, E.R.; Bik-Małodzińska, M. Nutrient and Mineral Profile of Chosen Fresh and Smoked Fish. Nutrients 2019, 11, 1448. [Google Scholar] [CrossRef] [PubMed]
- Mielcarek, K.; Puścion-Jakubik, A.; Gromkowska-Kępka, K.J.; Soroczyńska, J.; Karpińska, E.; Markiewicz-Żukowska, R.; Naliwajko, S.K.; Moskwa, J.; Nowakowski, P.; Borawska, M.H.; et al. Comparison of Zinc, Copper and Selenium Content in Raw, Smoked and Pickled Freshwater Fish. Molecules 2020, 25, 3771. [Google Scholar] [CrossRef]
- Krełowska-Kułas, M. Content of Some Metals in Mean Tissue of Salt-Water and Fresh-Water Fish and in Their Products. Nahrung 1995, 39, 166–172. [Google Scholar] [CrossRef]
- Marcinkowska, M.; Dobicki, W. Bioaccumulation of heavy metals in fish tissues from the Barycz river. In Interdyscyplinarne Zagadnienia w Inzynierii i Ochronie Srodowiska; Tom 4; Traczewska, T.M., Kaźmierczaka, B., Eds.; Oficyna Wydawnicza Politechniki Wrocławskiej: Wrocław, Poland, 2014; pp. 511–519. [Google Scholar]
- Chi, Q.; Zhu, G.; Langdon, A. Bioaccumulation of Heavy Metals in Fishes from Taihu Lake, China. J. Environ. Sci. 2007, 19, 1500–1504. [Google Scholar] [CrossRef] [PubMed]
- Rajeshkumar, S.; Li, X. Bioaccumulation of Heavy Metals in Fish Species from the Meiliang Bay, Taihu Lake, China. Toxicol. Rep. 2018, 5, 288–295. [Google Scholar] [CrossRef]
- Bawuro, A.A.; Voegborlo, R.B.; Adimado, A.A. Bioaccumulation of Heavy Metals in Some Tissues of Fish in Lake Geriyo, Adamawa State, Nigeria. J. Environ. Public Health 2018, 2018, 1854892. [Google Scholar] [CrossRef]
- Ghannam, H.E. Risk Assessment of Pollution with Heavy Metals in Water and Fish from River Nile, Egypt. Appl. Water Sci. 2021, 11, 125. [Google Scholar] [CrossRef]
- Silva, C.; Pereira, S.; Junior, P.; Souza, A.; Nogueira, D.; Santos, D.; Rocha, R. Bioaccumulation factor (baf) in fish caught in a river impacted by effluents from an alumina plant in the eastern brazilian amazon. Int. J. Res.-Granthaalayah 2022, 10, 154–171. [Google Scholar] [CrossRef]
- Majed, N.; Alam, M.K.; Real, M.I.H.; Khan3, M.S. Accumulation of Copper and Zinc Metals from Water in Anabus Testudineus Fish Species in Bangladesh. Aquast 2019, 19, 91–102. [Google Scholar] [CrossRef] [PubMed]
- Dias de Farias, D.S.; Rossi, S.; da Costa Bomfim, A.; Lima Fragoso, A.B.; Santos-Neto, E.B.; José de Lima Silva, F.; Lailson-Brito, J.; Navoni, J.A.; Gavilan, S.A.; Souza do Amaral, V. Bioaccumulation of Total Mercury, Copper, Cadmium, Silver, and Selenium in Green Turtles (Chelonia mydas) Stranded along the Potiguar Basin, Northeastern Brazil. Chemosphere 2022, 299, 134331. [Google Scholar] [CrossRef]
- Falfushynska, H.I.; Romanchuk, L.D.; Stolyar, O.B. Seasonal and Spatial Comparison of Metallothioneins in Frog Rana Ridibunda from Feral Populations. Ecotoxicology 2008, 17, 781–788. [Google Scholar] [CrossRef]
- Johns, C. Spatial Distribution of Total Cadmium, Copper, and Zinc in the Zebra Mussel (Dreissena Polymorpha) Along the Upper St. Lawrence River. J. Great Lakes Res. 2001, 27, 354–366. [Google Scholar] [CrossRef]
- Huang, D.; Zhang, L.; Mi, H.; Teng, T.; Liang, H.; Ren, M. Transcriptome-Based Analysis of the Mechanism of Action of Metabolic Disorders Induced by Waterborne Copper Stress in Coilia Nasus. Biology 2024, 13, 476. [Google Scholar] [CrossRef]
- Liao, W.; Zhu, Z.; Feng, C.; Yan, Z.; Hong, Y.; Liu, D.; Jin, X. Toxicity Mechanisms and Bioavailability of Copper to Fish Based on an Adverse Outcome Pathway Analysis. J. Environ. Sci. 2023, 127, 495–507. [Google Scholar] [CrossRef] [PubMed]
- Bao, X.; Li, Y.; Liu, X.; Feng, Y.; Xu, X.; Sun, G.; Wang, W.; Li, B.; Li, Z.; Yang, J. Effect of Acute Cu Exposure on Immune Response Mechanisms of Golden Cuttlefish (Sepia esculenta). Fish Shellfish Immunol. 2022, 130, 252–260. [Google Scholar] [CrossRef]
- Mebane, C.A. Bioavailability and Toxicity Models of Copper to Freshwater Life: The State of Regulatory Science. Environ. Toxicol. Chem. 2023, 42, 2529–2563. [Google Scholar] [CrossRef]
- Marchand, L.; Mench, M.; Jacob, D.L.; Otte, M.L. Corrigendum to “Metal and Metalloid Removal in Constructed Wetlands, with Emphasis on the Importance of Plants and Standardized Measurements: A Review” [Environ. Pollut. 158 (2010) 3447–3461]. Environ. Pollut. 2011, 159, 663. [Google Scholar] [CrossRef]
- Knox, A.S.; Paller, M.H.; Seaman, J.C. Removal of Low Levels of Cu from Ongoing Sources in the Presence of Other Elements–Implications for Remediated Contaminated Sediments. Sci. Total Environ. 2019, 668, 645–657. [Google Scholar] [CrossRef]
- Liu, Y.; Wang, H.; Cui, Y.; Chen, N. Removal of Copper Ions from Wastewater: A Review. Int. J. Environ. Res. Public Health 2023, 20, 3885. [Google Scholar] [CrossRef] [PubMed]
- Solioz, M.; Abicht, H.K.; Mermod, M.; Mancini, S. Response of Gram-Positive Bacteria to Copper Stress. J. Biol. Inorg. Chem. 2010, 15, 3–14. [Google Scholar] [CrossRef] [PubMed]
- López, A.; Lázaro, N.; Priego, J.M.; Marqués, A.M. Effect of pH on the Biosorption of Nickel and Other Heavy Metals by Pseudomonas Fluorescens 4F39. J. Ind. Microbiol. Biotechnol. 2000, 24, 146–151. [Google Scholar] [CrossRef]
- Albarracín, V.H.; Amoroso, M.J.; Abate, C.M. Isolation and Characterization of Indigenous Copper-Resistant Actinomycete Strains. Geochemistry 2005, 65, 145–156. [Google Scholar] [CrossRef]
- Adamo, G.M.; Lotti, M.; Tamás, M.J.; Brocca, S. Amplification of the CUP1 Gene Is Associated with Evolution of Copper Tolerance in Saccharomyces Cerevisiae. Microbiology 2012, 158, 2325–2335. [Google Scholar] [CrossRef]
- He, N.; Yao, W.; Tang, L. Surface Expression of Metallothionein Enhances Bioremediation in Escherichia coli. Desalination Water Treat. 2024, 317, 100070. [Google Scholar] [CrossRef]
- Tasleem, M.; Hussein, W.M.; El-Sayed, A.-A.A.A.; Alrehaily, A. An In Silico Bioremediation Study to Identify Essential Residues of Metallothionein Enhancing the Bioaccumulation of Heavy Metals in Pseudomonas Aeruginosa. Microorganisms 2023, 11, 2262. [Google Scholar] [CrossRef]
- Li, X.; Ren, Z.; Crabbe, M.J.C.; Wang, L.; Ma, W. Genetic Modifications of Metallothionein Enhance the Tolerance and Bioaccumulation of Heavy Metals in Escherichia coli. Ecotoxicol. Environ. Saf. 2021, 222, 112512. [Google Scholar] [CrossRef]
- Solioz, M.; Vulpe, C. CPx-Type ATPases: A Class of P-Type ATPases That Pump Heavy Metals. Trends Biochem. Sci. 1996, 21, 237–241. [Google Scholar] [CrossRef]
- Chen, C.; Song, Y.; Zhuang, K.; Li, L.; Xia, Y.; Shen, Z. Proteomic Analysis of Copper-Binding Proteins in Excess Copper-Stressed Roots of Two Rice (Oryza Sativa L.) Varieties with Different Cu Tolerances. PLoS ONE 2015, 10, e0125367. [Google Scholar] [CrossRef]
- Colica, G.; Li, H.; Rossi, F.; Li, D.; Liu, Y.; De Philippis, R. Microbial Secreted Exopolysaccharides Affect the Hydrological Behavior of Induced Biological Soil Crusts in Desert Sandy Soils. Soil Biol. Biochem. 2014, 68, 62–70. [Google Scholar] [CrossRef]
- Areco, M.M.; Hanela, S.; Duran, J.; dos Santos Afonso, M. Biosorption of Cu(II), Zn(II), Cd(II) and Pb(II) by Dead Biomasses of Green Alga Ulva Lactuca and the Development of a Sustainable Matrix for Adsorption Implementation. J. Hazard. Mater. 2012, 213–214, 123–132. [Google Scholar] [CrossRef] [PubMed]
- Blaga, A.C.; Zaharia, C.; Suteu, D. Polysaccharides as Support for Microbial Biomass-Based Adsorbents with Applications in Removal of Heavy Metals and Dyes. Polymers 2021, 13, 2893. [Google Scholar] [CrossRef]
- Kumar, P.M. Bioaccumulation of Heavy Metals in Fish from Waste Water a Review. Int. J. Pharm. Biol. Arch. 2012. Available online: https://api.semanticscholar.org/CorpusID:83040652 (accessed on 21 August 2024).
- Chen, X.C.; Wang, Y.P.; Lin, Q.; Shi, J.Y.; Wu, W.X.; Chen, Y.X. Biosorption of Copper(II) and Zinc(II) from Aqueous Solution by Pseudomonas Putida CZ1. Colloids Surf. B Biointerfaces 2005, 46, 101–107. [Google Scholar] [CrossRef] [PubMed]
- Long, M.; Jiang, H.; Li, X. Biosorption of Cu2+, Pb2+, Cd2+ and Their Mixture from Aqueous Solutions by Michelia Figo Sawdust. Sci. Rep. 2021, 11, 11527. [Google Scholar] [CrossRef]
- Hu, X.; Yu, C.; Shi, J.; He, B.; Wang, X.; Ma, Z. Biomineralization Mechanism and Remediation of Cu, Pb and Zn by Indigenous Ureolytic Bacteria B. intermedia TSBOI. J. Clean. Prod. 2024, 436, 140508. [Google Scholar] [CrossRef]
- Duarte-Nass, C.; Rebolledo, K.; Valenzuela, T.; Kopp, M.; Jeison, D.; Rivas, M.; Azócar, L.; Torres-Aravena, Á.; Ciudad, G. Application of Microbe-Induced Carbonate Precipitation for Copper Removal from Copper-Enriched Waters: Challenges to Future Industrial Application. J. Environ. Manag. 2020, 256, 109938. [Google Scholar] [CrossRef]
- Arias, D.; Cisternas, L.A.; Rivas, M. Biomineralization Mediated by Ureolytic Bacteria Applied to Water Treatment: A Review. Crystals 2017, 7, 345. [Google Scholar] [CrossRef]
- Achal, V.; Pan, X.; Zhang, D. Remediation of Copper-Contaminated Soil by Kocuria Flava CR1, Based on Microbially Induced Calcite Precipitation. Ecol. Eng. 2011, 37, 1601–1605. [Google Scholar] [CrossRef]
- Kang, C.-H.; Kwon, Y.-J.; So, J.-S. Bioremediation of Heavy Metals by Using Bacterial Mixtures. Ecol. Eng. 2016, 89, 64–69. [Google Scholar] [CrossRef]
- Qiao, S.; Zeng, G.; Wang, X.; Dai, C.; Sheng, M.; Chen, Q.; Xu, F.; Xu, H. Multiple Heavy Metals Immobilization Based on Microbially Induced Carbonate Precipitation by Ureolytic Bacteria and the Precipitation Patterns Exploration. Chemosphere 2021, 274, 129661. [Google Scholar] [CrossRef] [PubMed]
- Enochs, B.; Meindl, G.; Shidemantle, G.; Wuerthner, V.; Akerele, D.; Bartholomew, A.; Bulgrien, B.; Davis, A.; Hoyt, K.; Kung, L.; et al. Short and Long-Term Phytoremediation Capacity of Aquatic Plants in Cu-Polluted Environments. Heliyon 2023, 9, e12805. [Google Scholar] [CrossRef] [PubMed]
- Tang, K.H.D.; Awa, S.H.; Hadibarata, T. Phytoremediation of Copper-Contaminated Water with Pistia Stratiotes in Surface and Distilled Water. Water Air Soil Pollut. 2020, 231, 573. [Google Scholar] [CrossRef]
- Lu, D.; Huang, Q.; Deng, C.; Zheng, Y. Phytoremediation of Copper Pollution by Eight Aquatic Plants. Pol. J. Environ. Stud. 2018, 27, 175–181. [Google Scholar] [CrossRef] [PubMed]
- Alikasturi, A.S.; Kamil, M.Z.A.M.; Shakri, N.A.A.M.; Serit, M.E.; Rahim, N.S.A.; Shaharuddin, S.; Anuar, M.R.; Radzi, A.R.M. Phytoremediation of Copper in Mineral, Distilled and Surface Water Using Limnocharis Flava Plant. Mater. Today Proc. 2019, 19, 1489–1496. [Google Scholar] [CrossRef]
Country | Place | Concentration Range: Surface Water (µg·L−1) Sediment (µg·kg−1 D.M.) | Ref. | |
---|---|---|---|---|
Zn | ASIA | |||
India | South-eastern coastal: Andhra Pradesh | <0.070 | Mahdi et al., 2022 [36] | |
Thailand | Chao Phraya River (n = 16) | 5.33–17.10 (rainy season); 2.40–19.50 (dry season) | Niampradit et al., 2024 [37] | |
Chao Phraya River (n = 9) | 28.06–160.60 | Chanpiwat and Sthiannopkao 2013 [38] | ||
Tha Chin River (n = 38) | 160–7470 | Veschasit et al., 2012 [39] | ||
Cambodia | Tonle Sap—Bassac River (n = 11) | not detected | Veschasit et al., 2012 [39] | |
Indonesia | Citarum River (n = 10) | 3.28–44.26 | Veschasit et al., 2012 [39] | |
Winongo River (n = 8) | - | Fadlillah et al., 2023 [40] | ||
Malaysia | Linggi River (n = 15) | 1.16–6.35 | Razak et al., 2021 [41] | |
Semenyih River (n = 8) | 33.10–49.19 | Al-Badaii and Shuhaimi-Othman 2014 [42] | ||
Vietnam | Saigon River (n = 8) | 5.38–311.10 | Chanpiwat and Sthiannopkao 2013 [38] | |
Iran | Chah Nimeh reservoir—surface water (n = 7) | 730–960 (in spring) 1390–1560 (in summer) | Bazrafshan et al., 2015 [43] | |
Chah Nimeh reservoir—sediment (n = 7) | 87,000–99,000 (spring) 88,000–99,000 (summer) | |||
China | Dianchi Lake: water surface/sediment | 20.64/496,800 | Liu et al., 2021 [44] | |
Chaohu Lake: water surface/sediment | 23.05/341,000 | Wang et al., 2016 [45] | ||
Daye Lake: water surface/sediment | 2.68–3.64/237,500 | Wang et al., 2023 [46] | ||
Yangtze River: water surface/sediment | 5.40/104,100 | Li et al., 2020 [47] | ||
EUROPE | ||||
Poland | Muchawka River (n = 16/12): surface water/sediment | 15.3–20.1/16,200–21,300 | Kluska and Jabłonska, 2023 [48] | |
Liwiec River (n = 32) surface water/sediment | 16.4–19.6/16,400–22,900 | |||
Greece | Bay and Gulf of Thessaloniki (Aegean Sea including the Bay and Gulf of Thessaloniki) | 16.5–75.9 | Christophoridis et al., 2009 [49] | |
Turkey | Ataturk lake–sediment | 60,790 | Karadede and Unlu, 2000 [50] | |
The Dipsiz stream (sediment)—tributary of the river Buyuk Menderes | 37.000 ± 26.000 | Demirak et al., 2006 [51] | ||
The Dipsiz stream—tributary of the river Buyuk Menderes | 1.051 ± 1.751 | |||
Spain | Guadaira river: surface water/sediment | 20–190/43,100–1,033,000 | Enguix Gonzalez et al., 2000 [52] | |
Tinto River (sediment) | 110,000–6,730,000 | Galan et al., 2003 [53] | ||
France | Cajarc site, Lot River (sediment) | 909,000–10,000.000 | Audry et al., 2004 [54] | |
Germany | Malter Reservoir (sediment) | <1,900.000 | Muller et al., 2000 [55] | |
Scotland | Lochnagar (sediment) | 39,000–180,000 | Yang et al., 2002 [56] | |
Switzerland | Lake Zurich (sediment) | 50,000–675,000 | Von Gunten et al., 1997 [57] | |
Netherlands | Meuse River (sediment) | 803,000–108,3000 | Van der Berg et al., 1999 [58] | |
AMERICA | ||||
Mexico | Continental shelf—Tamaulipas (sediment) | 17,300–115,700 | Ponce 1995 [59] | |
Continental shelf—Tabasco (sediment) | 47,300–127,900 | |||
Southeast Gulf of Mexico—Lagoons | 0–85,200 | Rosales et al., 1999 [60] | ||
United States | 300 coastal and estuarine sites (sediment) | 140,000 (mean) | O’Connor and Cantillo 1992 [61] | |
U.S. Virgin Islands | Developed sites/undeveloped sites (wetland, forest, shrub, rangeland) | 26,700–153,000/ 27,300–95,300 | Lancellotti et al., 2023 [62] | |
Urugway | Montevideo Harbor (sediment) | 174,000–425,000 (summer) 183,000–491,000 (winter) | Muniz et al., 2004 [63] | |
Brazil | Jurujuba Sound | 15,000–337,000 | Baptista et al., 2000 [64] | |
Venezuela | Coral reef sediment | 36,000–77,000 | Bastidas et al., 1999 [65] | |
Chile | Southern Fjords | 91,000–122,000 | Ahumada et al., 2015 [66] | |
AFRICA | ||||
Malawi | Lake Chilwa: surface water/sediment | 6.24–1168.70/66,130 | Mussa et al., 2019 [67] | |
Cameroon | Municipal Lake (sediment) | 26,800–341,000 | Ekengele et al., 2008 [68] | |
Egipt | El-Mex Bay | 20,790–59,290 | Abdallah, 2008 [69] | |
Morocco | Sebou Estuary sediments | 179,000 | Cheggour et al., 2005 [70] | |
Nador lagoon | 4000–466,000 | Bloundi et al., 2008 [71] | ||
Zambia | Kafue River—Copperbelt mining region | 1000–125,000 | von der Heyden and New 2004 [72] | |
Namibia | sediments of the Gruben River | 205,000 | Taylor and Kesterton 2002 [73] | |
Algeria | Tafna Wadi | 14–70 | Benmostefa et al., 2022 [74] | |
Tanzania | Mwanza Gulf of Lake Victoria (sediment) | 45,400 | Kishe and Machiwa 2003 [75] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Falfushynska, H.; Lewicka, K.; Rychter, P. Unveiling the Hydrochemical and Ecotoxicological Insights of Copper and Zinc: Impacts, Mechanisms, and Effective Remediation Approaches. Limnol. Rev. 2024, 24, 406-436. https://doi.org/10.3390/limnolrev24040024
Falfushynska H, Lewicka K, Rychter P. Unveiling the Hydrochemical and Ecotoxicological Insights of Copper and Zinc: Impacts, Mechanisms, and Effective Remediation Approaches. Limnological Review. 2024; 24(4):406-436. https://doi.org/10.3390/limnolrev24040024
Chicago/Turabian StyleFalfushynska, Halina, Kamila Lewicka, and Piotr Rychter. 2024. "Unveiling the Hydrochemical and Ecotoxicological Insights of Copper and Zinc: Impacts, Mechanisms, and Effective Remediation Approaches" Limnological Review 24, no. 4: 406-436. https://doi.org/10.3390/limnolrev24040024
APA StyleFalfushynska, H., Lewicka, K., & Rychter, P. (2024). Unveiling the Hydrochemical and Ecotoxicological Insights of Copper and Zinc: Impacts, Mechanisms, and Effective Remediation Approaches. Limnological Review, 24(4), 406-436. https://doi.org/10.3390/limnolrev24040024