A Cartographic Landscape Analysis of the Geo-Ecological Condition of the Natural Reserve Object—Lake Doshne (Volyn Polissya, Ukraine)
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Methodological Basis
2.3. Fieldwork and Data Collection
3. Results
3.1. Morphometric and Hydrological Parameters
3.2. Hydrochemical Characteristics
3.3. Geological and Geochemical Features of the Watershed and Lake Deposits
3.3.1. Characteristics of the Geological Structure of the Watershed and Their Impact on the Lake’s Hydrochemistry
3.3.2. Organic–Mineral Deposits of the Lake, Their Composition, and Reserves
3.3.3. Geochemical Properties of Lake Sapropel
3.4. Landscape Structure of the Lake and Its Landscape-Metric Parameters
- I.
- Littoral–sublittoral aquatic sub-tract on peaty, sandy–muddy, and sandy sediments and sapropel featuring species diversity of surface and underwater macrophytes.
- II.
- Profundal aquatic sub-tract on carbonate sapropel underlain by Upper Cretaceous deposits.
4. Discussion
4.1. Limitations
4.2. Further Research
5. Conclusions
- The presented scheme of geographic landscape studies of lakes and their basins was tested on small lakes in the Polissia region, primarily those used for protection and recreation. This methodological approach aligns with the European Landscape Convention. The scheme adheres to the principles of the European Parliament and the Council of Europe in water policy, contributing to the implementation of the 2030 Sustainable Development Goals, particularly in ensuring the availability of quality services for the supply of safe drinking water and preserving the biotic diversity of terrestrial aquatic ecosystems.
- The proposed cartographic landscape models (based on Lake Doshne) of the LBS can be considered an informational basis for the cadastre of the NRF objects and the planned GIS atlas of the LBS of the Polissia region. These cartographic landscape models of lakes (or LBS) are significant for the spatial development of territorial communities and the ecological and landscape planning of local areas. The developed maps (bathymetric, landscape, etc.), stratigraphic profiles, and hydrological, hydrochemical, and geochemical parameters of the LBS constitute a prerequisite (or reference basis) for conducting geo-ecological monitoring and integrated management of surface water bodies located in the lake basin. The data will underpin the development of schemes for optimizing the protected and recreational use of a specific lake basin based on sustainable development goals.
- The research established that the basin of Lake Doshne is 29.24% filled with sapropel deposits. Furthermore, more than 16.05% of the NAC water area is covered with higher aquatic vegetation. Macrophytes are common in the peripheral zone of the littoral and are mainly limited to sandy-silty and peat deposits. The combined ecological assessment of the hydrochemical parameters of the lake water in three blocks (salt composition, trophic-saprobiological, and toxic effect) is 1.7, and the water resources of this lake correspond to the second category, class I.
- Given the close hydrological connection between the lake and the waters of the Upper Cretaceous horizon, it is proposed that the water protection zone around the lake be increased to prevent the ingress of pollutants into the underground aquifers. It is recommended that only organic farming be implemented within the boundaries of the agricultural lands of the farms adjacent to the lake.
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Council of Europe Landscape Convention (ETS No. 176). Available online: https://www.coe.int/en/web/conventions/full-list?module=treaty-detail&treatynum=176 (accessed on 14 March 2024).
- Council of Europe Landscape Convention. Water, landscape and citizenship in the face of global change. In Proceedings of the 22nd Council of Europe Meeting of the Workshops for the Implementation of the European Landscape Convention, Seville, Spain, 14–15 March 2019; Available online: https://rm.coe.int/council-of-europe-european-landscape-convention-22nd-meeting-of-the-wo/1680969b4d (accessed on 28 March 2024).
- Antrop, M. Geography and landscape science. Belgeo 2000, 1–2–3–4, 9–36. [Google Scholar] [CrossRef]
- Wojciechowski, K.H.; Skowronek, E.; Tucki, A. An outline of landscape science in Poland. Belgeo 2004, 2–3, 321–328. [Google Scholar] [CrossRef]
- Hrodzynskyi, M.D. Knowledge of the Landscape: Place and Space. Monograph; In 2 volumes; Publishing and Printing Center “Kyiv University”: Kyiv, Ukraine, 2005; Volume 1, p. 431. [Google Scholar]
- Hrodzynskyi, M.D. Knowledge of the Landscape: Place and Space. Monograph; In 2 volumes; Publishing and Printing Center “Kyiv University”: Kyiv, Ukraine, 2005; Volume 2, p. 503. [Google Scholar]
- Güngöroğlu, C.; Kavgacı, A.; Coşgun, U.; Çalıkoğlu, M.; Örtel, E.; Balpınar, N. Applicability of European landscape typology in Turkey (Çakırlar Watershed case/Antalya). Landsc. Res. 2018, 43, 831–845. [Google Scholar] [CrossRef]
- Michalik-Śnieżek, M.; Chmielewski, S.; Chmielewski, T.J. An introduction to the classification of the physiognomic landscape types: Methodology and results of testing in the area of Kazimierz Landscape Park (Poland). Phys. Geogr. 2018, 40, 384–404. [Google Scholar] [CrossRef]
- Volovyk, V.M. Landscape Science: A Course of Lectures; Tvory: Vinnytsia, Ukraine, 2018; p. 254. [Google Scholar]
- LeBrasseur, R.A. A refined literature review to promote sustainable development through integrated frameworks in the European landscape. J. Eur. Landsc. 2022, 3, 61–78. [Google Scholar] [CrossRef]
- Johnson, L.B.; Gage, S.J. Landscape approaches for the analysis of aquatic ecosystems. Freshw. Biol. 1997, 37, 113–132. [Google Scholar] [CrossRef]
- Martyniuk, V.O. The landscape method of study of lakes for the purposes of their rational use. Sci. Bull. Volyn State Univ. Geogr. Sci. Ser. 1998, 5, 49–51. [Google Scholar]
- Martyniuk, V.O. Landscape-limnological analysis of the basin (lake) geosystem. Sci. Notes Ternopil State Pedagog. Univ. Ser. Geogr. 1999, 2, 29–36. [Google Scholar]
- Magnuson, J.J.; Kratz, T.K. Lakes in the landscape: Approaches to regional limnology. Int. Ver. Theor. Angew. Limnol. 2000, 27, 74–87. [Google Scholar] [CrossRef]
- Magnuson, J.J.; Kratz, T.K.; Benson, B.J. Long-Term Dynamics of Lakes in the Landscape: Long-Term Ecological Research on North Temperate Lakes; Oxford University Press: New York, NY, USA, 2005; p. 464. [Google Scholar]
- Ilyin, L.V. Limnocomplexes of Ukrainian Polesia: Monograph: In 2 t. T. 1: Spatial and Geographical Bases of Research and Regional Patterns; Lesya Ukrainka Volyn National University: Lutsk, Ukraine, 2008; p. 316. [Google Scholar]
- Ilyin, L.V. Limnocomplexes of Ukrainian Polesia: Monograph: In 2 t. T. 2: Regional Features and Optimization; Lesya Ukrainka Volyn National University: Lutsk, Ukraine, 2008; p. 400. [Google Scholar]
- Soranno, P.A.; Webster, K.E.; Cheruvelil, K.S.; Bremigan, M.T. The lake landscape-context framework: Linking aquatic connections, terrestrial features and human effects at multiple spatial scales. Int. Ver. Theor. Angew. Limnol. Verhandlungen 2009, 30, 695–700. [Google Scholar] [CrossRef]
- Johnson, L.B.; Host, G.E. Recent developments in landscape approaches for the study of aquatic ecosystems. J. N. Am. Benthol. Soc. 2010, 29, 41–66. Available online: http://www.bioone.org/doi/full/10.1899/09-030.1 (accessed on 15 March 2024). [CrossRef]
- Uzun, O.; Dilek, F.; Çetinkaya, G.; Erduran, F.; Açiksöz, S. National and regional landscape classification and mapping of Turkey: Konya closed basin, Suğla Lake and its surrounding area. Int. J. Phys. Sci. 2011, 6, 550–565. Available online: http://www.academicjournals.org/IJPS (accessed on 18 March 2024).
- Arias-García, J.; José, G.-Z.; José Jesús, D.-P. Classifying landscape in endorheic basins: A methodological approach for the implementation of the European landscape convention. Eur. J. Geogr. 2017, 8, 55–77. Available online: https://eurogeojournal.eu/index.php/egj/article/view/290 (accessed on 11 March 2024).
- Liu, D.; Wang, X.; Zhang, Y.-L.; Yan, S.-j.; Cui, B.-S.; Yang, Z.-F. A Landscape Connectivity Approach for Determining Minimum Ecological Lake Level: Implications for Lake Restoration. Water 2019, 11, 2237. [Google Scholar] [CrossRef]
- Heino, J.; Toivanen, M.; Alahuhta, J. Deciphering land-use influences on boreal lakes to guide landscape planning. Ecol. Solut. Evid. 2023, 4, e12242. [Google Scholar] [CrossRef]
- Wang, M.; Niu, Z.; Zhong, Z.; Li, J.; Liu, H. Landscape Ecological Risk Assessment of the Chaohu Lake Region Based on Dynamic Evolution of Landscape Patterns. Pol. J. Environ. Stud. 2024, 33, 2831–2846. [Google Scholar] [CrossRef]
- The Law of Ukraine “On the Nature Reserve Fund of Ukraine”. Inf. Verkhovna Rada Ukr. 1992, 34, 502.
- State Cadastre of Territories and Objects of the Nature Reserve Fund. 2023. Available online: https://data.gov.ua/dataset/mepr_05 (accessed on 4 March 2024).
- A Cadaster System for Protected Areas in Ukraine Is under Development. 2023. Available online: http://snpa.in.ua/en/eksperty-rozroblyayut-bazu-danyh-kadastru-pzf/ (accessed on 5 February 2024).
- Nature Reserve Fund of the Volyn Region. 2023. Available online: http://eco.voladm.gov.ua/ (accessed on 28 January 2024).
- Mika, M.; Sejka, M.; Len, P.; Krul, J. A concept for using water cadastre database components to build a multidimensional cadastre in Poland. Surv. Rev. 2018, 50, 201–211. [Google Scholar] [CrossRef]
- Çoruhlu, Y.E.; Çelik, M.Ö. Protected area geographical management model from design to implementation for specially protected environment area. Land Use Policy 2022, 122, 106357. [Google Scholar] [CrossRef]
- Protected Areas Database of the United States (PAD-US) 3.0 (Ver. 2.0, March 2023). Available online: https://www.sciencebase.gov/catalog/item/61794fc2d34ea58c3c6f9f69 (accessed on 5 April 2024).
- Lakes of Greece. Available online: http://geodata.gov.gr/en/dataset/limnes-elladas (accessed on 9 April 2024).
- Martyniuk, V.O.; Andriichuk, S.V. Cadastral and landscape modeling of the lakes of the nature reserve fund of Upper Pripyat. In Scientific Research of the XXI Century. Collective Monograph; Shpak, V., Tabachnikov, S., Eds.; GS Publishing Service: Los Angeles, CA, USA, 2021; Volume 1, pp. 42–52. [Google Scholar] [CrossRef]
- Martyniuk, V.; Korbutiak, V.; Zubkovych, I. Cadastral and landscape modeling of lakes as a prerequisite for protected and recreational nature resource management. IOP Conf. Ser. Earth Environ. Sci. 2023, 1254, 012097. [Google Scholar] [CrossRef]
- Kyryliuk, M.O. Design of the database of the interactive atlas of objects of the nature reserve fund of Ukraine. Ukr. Geogr. J. 2021, 4, 57–65. [Google Scholar] [CrossRef]
- Kovalchuk, I.P. Geoinformational atlas mapping lake-basin systems. Sci. Notes Ternopil State Pedagog. Univ. Ser. Geogr. 2014, 1, 176–182. [Google Scholar]
- Mauersberger, R. Klassifikation der Seen für die Naturraumerkundung des nordostdeutschen Tieflandes. Arch. Naturschutz Landschaftsforschung 2006, 45, 51–89. [Google Scholar]
- Martin, S.L.; Soranno, P.A. Lake landscape position: Relationships to hydrologic connectivity and landscape features. Limnol. Oceanogr. 2006, 51, 801–814. [Google Scholar] [CrossRef]
- Česonienė, L.; Šileikienė, D.; Dapkienė, M. Relationship between the Water Quality Elements of Water Bodies and the Hydrometric Parameters: Case Study in Lithuania. Water 2020, 12, 500. [Google Scholar] [CrossRef]
- Dondajewska, R.; Gołdyn, R.; Messyasz, B.; Kowalczewska-Madura, K.; Cerbin, S. A Shallow Lake in an Agricultural Landscape–Water Quality, Nutrient Loads, Future Management. Limnol. Rev. 2019, 19, 25–35. [Google Scholar] [CrossRef]
- Choiński, A.; Ptak, M.; Ławniczak, A.E. Changes in Water Resources of Polish Lakes as Influenced by Natural and Anthropogenic Factors. Pol. J. Environ. Stud. 2016, 25, 1883–1890. [Google Scholar] [CrossRef]
- Hutorowicz, A. A Retrospective Ecological Status Assessment of the Lakes Based on Historical and Current Maps of Submerged Vegetation—A Case Study from Five Stratified Lakes in Poland. Water 2020, 12, 2607. [Google Scholar] [CrossRef]
- Klimaszyk, P.; Borowiak, D.; Ryszard, P.; Rosińska, J.; Szeląg-Wasielewska, E.; Kraska, M. The Effect of Human Impact on the Water Quality and Biocoenoses of the Soft Water Lake with Isoetids: Lake Jeleń, NW Poland. Water 2020, 12, 945. [Google Scholar] [CrossRef]
- Ptak, M.; Szyga-Pluta, K.; Heddam, S.; Zhu, S.; Sojka, M.A. Century of Changes in the Surface Area of Lakes in West Poland. Resources 2023, 12, 110. [Google Scholar] [CrossRef]
- Directive 2000/60/EC of the European Parliament and of the Council of 23 October 2000 establishing a framework for Community action in the field of water policy. Off. J. Eur. Communities 2000, 22, 12. ENL327/1-72.
- ILEC. Managing Lakes and Their Basins for Sustainable Use: A Report for Lake Basin Managers and Stakeholders; International Lake Environment Committee Foundation: Kusatsu, Japan, 2005; Available online: https://iwlearn.net/documents/5975 (accessed on 18 February 2024).
- The Procedure for Developing a River Basin Management Plan. Resolution No. 336 of the Cabinet of Ministers of Ukraine of May 18, 2017. No 336. Available online: https://zakon.rada.gov.ua/laws/show/336-2017-%D0%BF#n8 (accessed on 19 March 2024).
- Tomiltseva, A.I.; Yatsyk, A.V.; Mokin, V.B.; Myxajlenko, L.Y.; Baranovska, V.Y.; Kurylyuk, M.S.; Ovcharenko, I.I.; Chernyavska, A.P.; Tomilcev, I.M.; Yakovlyev, Y.O.; et al. Ecological Foundations of Water Resources Management; Institute of Ecological Management and Balanced Nature Management: Kyiv, Ukraine, 2017; p. 200. [Google Scholar]
- Kovalchuk, P.; Kovalenko, R.; Balykhina, H. Methodological features of the concept of water use system management using basin principle. Land Reclam. Water Manag. 2018, 107, 17–23. [Google Scholar] [CrossRef]
- Tammeorg, O.; Chorus, I.; Spears, B.; Nõges, P.; Nürnberg, G.K.; Tammeorg, P.; Søndergaard, M.; Jeppesen, E.; Paerl, H.; Huser, B.; et al. Sustainable lake restoration: From challenges to solutions. Wiley Interdiscip. Rev. Water 2024, 11, e1689. [Google Scholar] [CrossRef]
- Cianci-Gaskill, J.A.; Klug, J.L.; Merrell, K.C.; Millar, E.E.; Wain, D.J.; Kramer, L.; van Wijk, D.; Paule-Mercado, M.C.A.; Finlay, K.; Glines, M.R.; et al. A lake management framework for global application: Monitoring, restoring, and protecting lakes through community engagement. Lake Reserv. Manag. 2024, 40, 66–92. [Google Scholar] [CrossRef]
- Nesterchuk, I.K. Geoecological Analysis: Conceptual Approaches, Sustainable Development. Monograph; State Technical University: Zhytomyr, Ukraine, 2011; p. 312. [Google Scholar]
- Pylypovych, O.V.; Kovalchuk, I.P. Geoecology of the Upper Dniester River-Basin System: Monograph; Ivan Franko National University of Lviv: Lviv–Kyiv, Ukraine, 2017; p. 284. [Google Scholar]
- Bajkiewicz-Grabowska, E. Geoecosystems of Polish Lakes. In Polish River Basins and Lakes—Part I. The Handbook of Environmental Chemistry; Korzeniewska, E., Harnisz, M., Eds.; Springer: Cham, Switzerland, 2020; Volume 86, pp. 57–67. [Google Scholar] [CrossRef]
- Kruhlov, I. Transdisciplinary Geoecology: Monograph; Ivan Franko National University of Lviv: L’viv, Ukraine, 2020; p. 292. [Google Scholar]
- Grodzynskyi, M.D.; Shyshchenko, P.G. (Eds.) Methods of Geoecological Research; Publishing Center “Kyiv University”: Kyiv, Ukraine, 1999; p. 243. [Google Scholar]
- Voitkiv, P.; Ivanov, Y.E. Methods of Geoecological Research; Ivan Franko National University of Lviv: Lviv, Ukraine, 2022; p. 106. [Google Scholar]
- Kovalchuk, A.I.; Kovalchuk, I.P. Atlas Mapping of River Basin Systems: Monograph; Prostir-M: Lviv, Ukraine, 2018; p. 348. [Google Scholar]
- Dourado, Á.; Sobrinho, J.; Barbosa, F.; Lima, E. Mapping and Characterization of the Landscape Units of the Coastal Hydrographic Basin of Rio Pacoti, Ceará, Brazil. J. Geogr. Inf. Syst. 2021, 13, 260–273. [Google Scholar] [CrossRef]
- Melnychenko, T.; Solovey, T. Mapping Water Bodies and Wetlands from Multispectral and SAR Data for the Cross-Border River Basins of the Polish–Ukrainian Border. Water 2024, 16, 407. [Google Scholar] [CrossRef]
- Miller, G.P.; Petlin, V.M.; Melnyk, A.V. Landscape Science: Theory and Practice. Scientific Manual; Ivan Franko National University of Lviv: Lviv, Ukrainian, 2002; p. 172. [Google Scholar]
- Chervanov, I.G.; Ignatiev, S.E. Landscape Mapping Using GIS Technologies; V.N. Karazin Kharkiv National University, Ukraine, 2006; p. 109.
- Hrodzynskyi, M.D.; Savytska, O.V. Landscape Science; Kyiv University Publishing and Printing Center: Kyiv, Ukraine, 2008. [Google Scholar]
- Dumpis, J.; Lagzdins, A. Methodology for Bathymetric Mapping Using Open-Source Software. Environ. Clim. Technol. 2020, 24, 239–248. [Google Scholar] [CrossRef]
- Rusyn, B.; Alokhina, O.; Korus, M.; Ivchenko, D.; Pits, N.; Obukh, Y. Estimation the Subterranean Sources of Lakes Water Supply Based on Bathymetric Survey. Environ. Clim. Technol. 2022, 26, 574–586. [Google Scholar] [CrossRef]
- Zubkovych, I.; Kovalchuk, I.; Martyniuk, V.; Korbutiak, V.; Andriychuk, S. Echo-sounding of lakes of the Nobel national nature park for the purposes of landscape mapping and geoecological monitoring. In European Association of Geoscientists & Engineers, Proceedings of the International Conference of Young Professionals «GeoTerrace-2021», Lviv, Ukraine, 4–6 October 2021; European Association of Geoscientists & Engineers: Utrecht, The Netherlands, 2021; Volume 2021, pp. 1–5. [Google Scholar] [CrossRef]
- Khmelevskyi, V.O.; Khmelevska, O.V. Lithology: Lithogenesis. Sedimentary Rocks: Study Guide; Ivan Franko National University of Lviv: Lviv, Ukraine, 2015; p. 536. [Google Scholar]
- Pasichnyk, M.P.; Ilyin, L.V.; Khilchevskyi, V.K. Sapropel Recreational and Tourist Resources of Lakes of Volyn Region; Volynpoligraph: Lutsk, Ukraine, 2021; p. 172. [Google Scholar]
- Khilchevskyi, V.; Ilyin, L.; Pasichnyk, M.; Zabokrytska, M.; Ilyina, O. Hydrography, hydrochemistry and composition of sapropel of Shatsk Lakes. J. Water Land Dev. 2022, 54, 184–193. [Google Scholar] [CrossRef]
- Martyniuk, V.O.; Kovalchuk, I.P.; Zubkovych, I.V.; Pavlovska, T.C.; Sukhodolska, I.L. The geoecological analysis of Lake Tuchne (Volyn Polissia) and assessment of sapropel reserves in it. J. Geol. Geogr. Geoecol. 2024, 33, 118–131. [Google Scholar] [CrossRef]
- Kovalchuk, I.; Martyniuk, V.; Šeirienė, V. The basinlandscape approach to the protection and condition optimization of the lakes of the national parks. Visnyk VN Karazin Kharkiv Natl. Univ. Ser. Geol. Geogr. Ecol. 2020, 53, 239–254. [Google Scholar] [CrossRef]
- Martyniuk, V.; Korbutiak, V.; Hopchak, I.; Kovalchuk, I.; Zubkovych, I. Methodology for assessing the geoecological state of landscape-lake systems and their cartographic modelling (based on the case study of Lake Bile, Rivne Nature Reserve, Ukraine). Baltica 2023, 36, 13–29. [Google Scholar] [CrossRef]
- Khilchevskyi, V.K.; Grebin, V.V. Water Objects of Ukraine and Recreational Assessment of Water Quality: Textbook; DIA: Kiev, Ukraine, 2022; p. 240. [Google Scholar]
- Khilchevskyi, V.K. Hydrochemical Dictionary; DIA: Kiev, Ukraine, 2022; p. 208. [Google Scholar]
- Romanenko, V.D.; Zhukinsky, V.M.; Oksiyuk, O.P.; Yacyk, A.V.; Chernyavska, A.P.; Vasenko, O.G.; Vernychenko, G.A. Methodology of Ecological Assessment of Surface Water Quality by Appropriate Categories; Symbol-T: Kyiv, Ukraine, 2001; p. 28. [Google Scholar]
- Vystavna, Y.Y.; Reshetchenko, A.I.; Dyadin, D.V. Heavy metals in bottom sediments of urban and regional systems basin r. Siverskyy Donets. Munic. Econ. Cities Ser. Eng. Sci. Archit. 2015, 120, 59–63. Available online: http://nbuv.gov.ua/UJRN/kgm_tech_2015_120_14 (accessed on 11 April 2024).
- Petruk, A.M. Study of specific indicators of toxic and radiation lake Bile aquatic ecosystems. Bull. Natl. Univ. Water Environ. Eng. Agric. Sci. Ser. 2013, 4, 101–111. Available online: https://ep3.nuwm.edu.ua/1318/1/Vs6413.pdf (accessed on 7 April 2024).
- Domaranskyi, A.O. Landscape Diversity: Essence, Meaning, Metrization, Conservation; TOV “Imeks-LTD”: Kirovograd, Ukraine, 2006. [Google Scholar]
- Martyniuk, V.O.; Zubkovych, I.V.; Zhuravchak, R.O. Ecological Passport of Lake Bilske/Rivne State Humanitarian University; O. Zen Publisher: Rivne, Ukraine, 2020; p. 32. [Google Scholar]
- Zalesski, I. Reconstruction of Volyn Polissya Pleistocene Landscapes in Connection with Rational Nature Management Issues; Diss. Cand. geogr. sciences. Manuscript; Library Named after V.I. Vernadskyi: Kiev, Ukrainian, 1987; p. 283. [Google Scholar]
- Dobrowolski, R.; Balaga, K.; Bogucki, A.; Fedorowicz, S.; Melke, J.; Pazdur, A.; Zubovič, S. Chronostratigraphy of the Okunin and Czerepacha lake–mire geosystems (Volhynia Polesiye, NW Ukraine) during the late glacial and Holocene. Geochronometria 2001, 20, 107–115. [Google Scholar]
- Farina, A. Principles of Landscape Dynamics; Springer: Dordrecht, The Netherlands, 2006. [Google Scholar] [CrossRef]
- Melesse, A.M.; Abtew, W. Landscape Dynamics, Soils and Hydrological Processes in Varied Climates; Springer: Dordrecht, The Netherlands, 2015; p. 839. [Google Scholar] [CrossRef]
- Ferencz, B. Role of hydrological factors in shaping water chemistry of small flow-through Polish lake. Environ. Earth Sci. 2016, 75, 986. [Google Scholar] [CrossRef]
- Grinfelde, I.; Bakute, A.; Pilecka, J.; Berzina, L.; Vebere, L.L. The impact of landscape structure of catchment area on lake hydrology. In Proceedings of the 19th International Multidisciplinary Scientific GeoConference SGEM 2019, Albena, Bulgaria, 28 June–7 July 2019; pp. 569–576. [Google Scholar] [CrossRef]
- Heluta, V.P.; Vakarenko, L.P.; Dubyna, D.V.; Bezusko, L.G.; Virchenko, V.M.; Vrona, I.S.; Gajova, V.P.; Demchenko, E.M.; Ilyin, L.V.; Kotenko, A.G.; et al. Liubche Reserve. Natural Conditions, Biodiversity, Conservation and Management; Institute of Botany Named after M.G. Xolodnogo National Academy of Sciences of Ukraine: Kyiv, Ukraine, 2001; p. 224. [Google Scholar]
- Hryb, Y.; Sondak, V. Aging of Polissia lakes of Ukraine: Processes, rehabilitation, protection. In Lakes and Artificial Reservoirs of Ukraine: Current State and Anthropogenic Changes, Proceedings of the Materials of the I International Science and Practice Conference, Lutsk, Ukraine, 22–24 May 2008; RVV “Vezha” Lesya Ukrainka Volyn National University: Lutsk, Ukraine, 2008; pp. 161–166. [Google Scholar]
- Brouwer, E.; Roelofs, J.G.M. Degraded Softwater Lakes: Possibilities for Restoration. Restor. Ecol. 2001, 9, 155–166. [Google Scholar] [CrossRef]
- Tórz, A.; Bonisławska, M.; Rybczyk, A.; Nędzarek, A.; Tański, A. Susceptibility to Degradation, the Causes of Degradation, and Trophic State of Three Lakes in North-West Poland. Water 2020, 12, 1635. [Google Scholar] [CrossRef]
- Rücker, J.; Nixdorf, B.; Quiel, K.; Grüneberg, B. North German Lowland Lakes Miss Ecological Water Quality Standards—A Lake Type Specific Analysis. Water 2019, 11, 2547. [Google Scholar] [CrossRef]
- Sellergren, M.; Li, J.; Drakare, S.; Thöns, S. Decision Support for Lake Restoration: A Case Study in Swedish Freshwater Bodies. Water 2023, 15, 668. [Google Scholar] [CrossRef]
- Lencewiz, S. Miedzyrzecza Bugu i Prypeci. Wody plynace i jeziora. Przeglad geogr. Warszawa. 1931, Volume XI, pp. 1–72. Available online: https://rcin.org.pl/Content/18994/WA51_29654_r1931-t11_Przeg-Geogr.pdf (accessed on 19 April 2024).
- Verpoorter, C.; Kutser, T.; Seekell, D.A.; Tranvik, L.J. A global inventory of lakes based on high-resolution satellite imagery. Geophys. Res. Lett. 2014, 41, 6396–6402. [Google Scholar] [CrossRef]
- Pekel, J.-F.; Cottam, A.; Gorelick, N.; Belward, A.S. High-resolution mapping of global surface water and its long-term changes. Nature 2016, 540, 418–422. [Google Scholar] [CrossRef]
- Busker, T.; de Roo, A.; Gelati, E.; Schwatke, C.; Adamovic, M.; Bisselink, B.; Pekel, J.-F.; Cottam, A. A global lake and reservoir volume analysis using a surface water dataset and satellite altimetry. Hydrol. Earth Syst. Sci. 2019, 23, 669–690. [Google Scholar] [CrossRef]
- Meyer, M.F.; Labou, S.G.; Cramer, A.N.; Brousil, M.R.; Luff, B.T. The global lake area, climate, and population dataset. Sci. Data 2020, 7, 174. [Google Scholar] [CrossRef]
- Romanenko, V.D.; Afanasyev, S.O.; Osadchiy, V.I. (Eds.) Hydroecosystems of the Protected Territories of the Upper Prypiat’ under Climate Changes: Monograph; Kafedra: Kyiv, Ukraine, 2013; p. 228. [Google Scholar]
- Woolway, R.I.; Kraemer, B.M.; Lenters, J.D.; Merchant, C.J.; O’reilly, C.M.; Sharma, S. Global lake responses to climate change. Nat. Rev. Earth Environ. 2020, 1, 388–403. [Google Scholar] [CrossRef]
- Skowron, R.; Kirvel, P.; Choiński, A.; Kirvel, I. Diversity and Variability of the Course of Ice Phenomena on the Lakes Located in the Southern and Eastern Part of the Baltic Sea Catchment Area. Limnol. Rev. 2023, 23, 33–49. [Google Scholar] [CrossRef]
- Česonienė, L.; Šileikienė, D.; Marozas, V.; Čiteikė, L. Influence of Anthropogenic Loads on Surface Water Status: A Case Study in Lithuania. Sustainability 2021, 13, 4341. [Google Scholar] [CrossRef]
- Lukman, L. Anthropogenic Impact on Lake Ecosystem. In Science of Lakes—Multidisciplinary Approach; Assani, A.A., Ed.; IntechOpen: London, UK, 2023. [Google Scholar] [CrossRef]
- Pi, X.; Luo, Q.; Feng, L.; Xu, Y.; Tang, J.; Liang, X.; Ma, E.; Cheng, R.; Fensholt, R.; Brandt, M.; et al. Mapping global lake dynamics reveals the emerging roles of small lakes. Nat. Commun. 2022, 13, 5777. [Google Scholar] [CrossRef]
- Martyniuk, V.O.; Tomchenko, O.V. The use of remote sensing of the Earth to assess the natural and anthropogenic transformations of the lakes of the Polissia region. Ukr. J. Earth Remote Sens. 2021, 8, 27–35. [Google Scholar] [CrossRef]
- Sender, J.; Maślanko, W.; Różańska-Boczula, M.; Cianfaglione, K. A new multi-criteria method for the ecological assessment of lakes: A case study from the Transboundary Biosphere Reserve ‘West Polesie’ (Poland). J. Limnol. 2017, 76 (Suppl. S1), 60–74. [Google Scholar] [CrossRef]
- Avram, S.; Cipu, C.; Corpade, A.-M.; Gheorghe, C.A.; Manta, N.; Niculae, M.-I.; Pascu, I.S.; Szép, R.E.; Rodino, S. GIS-Based Multi-Criteria Analysis Method for Assessment of Lake Ecosystems Degradation—Case Study in Romania. Int. J. Environ. Res. Public Health 2021, 18, 5915. [Google Scholar] [CrossRef] [PubMed]
* Flake, km2 | Habs., m | hmid., m | hmax., m | L, km | Wmax., km | Wmid., km | ι, km | Ct. | Clen. |
0.19 | 162.5 | 6.50 | 28.50 | 0.567 | 0.448 | 0.335 | 1.710 | 0.619 | 1.693 |
Ccap. | Cop. | Cdep. | Vlake, million m3 | A | ΔS, km2 | Winflux.**, thous·m3 | awat. | Δawat., mm | Alayer. mm |
0.228 | 0.029 | 11.304 | 1239 | 0.500 | 2.002 | 47.9 | 0.039 | 25.866 | 3258.0 |
Serial No | Index | Unit of Measurement | TLV for Recreational Use [73] | TLV for Fishery [74] | Measurement Results | Quality Categories and Water Classes | |
---|---|---|---|---|---|---|---|
Category | Class | ||||||
A. Indicator of salt composition | |||||||
1 | Mineralization (dry residue) | mg/dm3 | ≤1000 | <300 | 168.1 | 1 | I |
2 | Chloride ions | mg/dm3 | 350 | 300 | 10.64 | 1 | I |
3 | Sulfates | mg/dm3 | 500 | 100 | 30.04 | 1 | I |
Integral index by salt block I1 = 1.0 | 1 | 1 | |||||
B. Tropho-saprobiological indicators | |||||||
4 | General stiffness | mmol/dm3 | 7 | 7 | 2.24 | – | – |
5 | Suspended substances | mg/dm3 | 0.75 + background (30) | 15 | 9.03 | 2 | II |
6 | Transparency | m | >1.0 | >1.5 | 2.8 | 1 | I |
7 | pH | pH units | 6.5–8.5 | 6.5–8.5 | 7.6 | 2 | II |
8 | Ammonium nitrogen | mgN/dm3 | 0.5 | 0.5 | 0.1 | 1 | I |
9 | Nitrite nitrogen | mgN/dm3 | 3.3 | 0.08 | 0.01 | 1 | I |
10 | Nitrate nitrogen | mgN/dm3 | 45 | 40 | 18.07 | 7 | V |
11 | Phosphorus phosphates | mgP/dm3 | 3.5 | 2.14 | 0.036 | 3 | II |
12 | Chemical oxygen consumption (Mn) | mgO2/dm3 | ≥4 | ≥6 | 2.89 | 7 | V |
13 | Biological oxygen consumption, BOC5 | mgO2/dm3 | ≤6 (t = 20) | ≤3.0 | 1.91 | 3 | II |
14 | Calcium | mg/dm3 | 180.0 | 44.97 | – | – | |
15 | Magnesium | mg/dm3 | 40.0 | <0.5 | – | – | |
Integral index by tropho-saprobiological block I2 = 3.0 | 3 | II | |||||
C. Specific indicators of toxic impact | |||||||
16 | Iron | mg/dm3 | 0.33 | 0.1 | <0.1 | 1 | I |
Integral index by block of indicators of toxic action I3 = 1.0 | 1 | I | |||||
Combined ecological assessment of hydrochemical indicators Ie = 1.7 | 2 | I |
№ | Sampling Depth, m | Grain Size Composition, % | |||||||
---|---|---|---|---|---|---|---|---|---|
* 5.0–2.0, mm | 2.0–1.0, mm | 1.0–0.5, mm | 0.5–0.25, mm | 0.25–0.10, mm | 0.10–0.05, mm | 0.05–0.01, mm | 0.01–0.005, mm | ||
1 | 1.0–2.5 | – | 0.7 | 3.8 | 39.5 | 43.8 | 10.4 | 1.2 | 0.6 |
2 | 2.5–3.5 | 0.6 | 10.8 | 6.1 | 35.0 | 38.7 | 6.7 | 1.0 | 1.1 |
Indicator | Measurement Unit | Min–Max Values | Average Value |
---|---|---|---|
Hygroscopic moisture | % | 0.23–0.25 | 0.24 |
Total moisture content | % | 21.8–28.2 | 25.0 |
Maximum molecular moisture content | % | 3.3–4.4 | 3.85 |
Water conductivity | % | 18.5–18.8 | 18.65 |
Bulk density in loose state | g/cm3 | 1.41–1.44 | 1.43 |
Bulk density in dense state | g/cm3 | 1.69–1.71 | 1.7 |
Density | g/cm3 | 2.64–2.66 | 2.65 |
Porosity in loose state | % | 45.8–46.6 | 46.2 |
Porosity in dense state | % | 35.2–36.4 | 35.8 |
Porosity coefficient in loose state | % | 0.85–0.87 | 0.86 |
Porosity coefficient in dense state | % | 0.54–0.57 | 0.55 |
Filtration coefficient | m/day | 1.15–1.39 | 1.27 |
NAC Type | Area (S) of NAC Type, ha | % of the Type Area from the Total Area | No. of Units of Facies within NAC | % of Total Number | Mean Area of the Subtract (ha) | * The Index of the Fractionality of Landscape Contours | * Index of LandscapeComplexity | * The Index of Landscape Fragmentation | ||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
Sub-Tract | Aqua-Facies, n | Sub-Tract | Aqua-Facies | Sub-Tract | Aqua-Facies | |||||||
n | % | S0 = S/n | If.c. = n/S | Il.c. = n/S0 | Il.f. = 1 − S0/S | |||||||
I | 10.95 | 56.50 | 5 | 62.5 | 2.19 | 0.46 | 2.28 | 0.80 | ||||
1.1 | 3.11 | 16.05 | ||||||||||
1.2 | 2.38 | 12.28 | ||||||||||
1.3 | 5.46 | 28.17 | ||||||||||
II | 8.43 | 43.50 | 3 | 37.5 | 2.81 | 0.36 | 1.07 | 0.67 | ||||
2.1 | 2.09 | 10.78 | ||||||||||
2.2 | 5.42 | 27.97 | ||||||||||
2.3 | 0.92 | 4.75 | ||||||||||
Total | 19.38 | 19.38 | 100.0 | 100.0 | 8 | 100.0 | 2.42 | 0.41 | 3.31 | 0.88 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kirvel, I.; Martyniuk, V.; Kovalchuk, I.; Andronache, I.; Korbutiak, V.; Zubkovych, I. A Cartographic Landscape Analysis of the Geo-Ecological Condition of the Natural Reserve Object—Lake Doshne (Volyn Polissya, Ukraine). Limnol. Rev. 2024, 24, 385-405. https://doi.org/10.3390/limnolrev24030023
Kirvel I, Martyniuk V, Kovalchuk I, Andronache I, Korbutiak V, Zubkovych I. A Cartographic Landscape Analysis of the Geo-Ecological Condition of the Natural Reserve Object—Lake Doshne (Volyn Polissya, Ukraine). Limnological Review. 2024; 24(3):385-405. https://doi.org/10.3390/limnolrev24030023
Chicago/Turabian StyleKirvel, Ivan, Vitalii Martyniuk, Ivan Kovalchuk, Ion Andronache, Vasyl Korbutiak, and Ivan Zubkovych. 2024. "A Cartographic Landscape Analysis of the Geo-Ecological Condition of the Natural Reserve Object—Lake Doshne (Volyn Polissya, Ukraine)" Limnological Review 24, no. 3: 385-405. https://doi.org/10.3390/limnolrev24030023
APA StyleKirvel, I., Martyniuk, V., Kovalchuk, I., Andronache, I., Korbutiak, V., & Zubkovych, I. (2024). A Cartographic Landscape Analysis of the Geo-Ecological Condition of the Natural Reserve Object—Lake Doshne (Volyn Polissya, Ukraine). Limnological Review, 24(3), 385-405. https://doi.org/10.3390/limnolrev24030023