Prediction of Erosive Processes in the Río Piedras and Flecha de El Rompido Salt Marsh (Huelva, Spain) Using Iterative Models and GIS
Abstract
:1. Introduction
2. Study Area
3. Methodology
4. Results
4.1. DEM Generation
4.2. Land Use Changes
4.3. Prediction of Volumetric Change Processes
4.4. Prediction of Average Erosion in the Río Piedras and Flecha de El Rompido Salt Marsh
5. Discussion
6. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Ramírez-Juidias, E. Sedimentation Processes in the Tinto and Odiel Salt Marshes in Huelva, Spain. In Sedimentation Engineering; IntechOpen: London, UK, 2018. [Google Scholar]
- Gouveia, M.M.; Magni, N.N.; Lopes, C.L.; Ribeiro, A.S.; Dias, J.M.; Silva, H. The Importance of Soil Elevation and Hydroperiods in Salt Marsh Vegetation Zonation: A Case Study of Ria de Aveiro. Appl. Sci. 2023, 13, 4605. [Google Scholar] [CrossRef]
- Sousa, A.; García-Murillo, P.; Sahin, S.; Morales, J.; García-Barrón, L. Wetland place names as indicators of manifestations of recent climate change in SW Spain (Doñana Natural Park). Clim. Chang. 2010, 100, 525–557. [Google Scholar] [CrossRef]
- Nguyen, C.; Starek, M.J.; Tissot, P.; Gibeaut, J. Unsupervised Clustering of Multi-Perspective 3D Point Cloud Data in Marshes: A Case Study. Remote Sens. 2019, 11, 2715. [Google Scholar] [CrossRef]
- Gilby, B.L.; Weinstein, M.P.; Baker, R.; Cebrian, J.; Alford, S.B.; Chelsky, A.; Colombano, D.; Connolly, R.M.; Currin, C.A.; Feller, I.C.; et al. Human Actions Alter Tidal Marsh Seascapes and the Provision of Ecosystem Services. Estuaries Coasts 2021, 44, 1628–1636. [Google Scholar] [CrossRef]
- Finotello, A.; Tognin, D.; Carniello, L.; Ghinassi, M.; Bertuzzo, E.; D’Alpaos, A. Hydrodynamic Feedbacks of Salt-Marsh Loss in the Shallow Microtidal Back-Barrier Lagoon of Venice (Italy). Water Resour. Res. 2023, 59, e2022WR032881. [Google Scholar] [CrossRef]
- Conradi, M.; Sánchez-Moyano, J.E.; Bhuiyan, M.K.A.; Rodríguez-Romero, A.; Galotti, A.; Basallote, M.D.; DelValls, A.; Parra, G.; Riba, I. Intraspecific variation in the response of the estuarine European isopod Cyathura carinata (Krøyer, 1847) to ocean acidification. Sci. Total Environ. 2019, 683, 134–145. [Google Scholar] [CrossRef] [PubMed]
- Arias-García, J.; Gómez-Zotano, J. La planificación y gestión de los humedales de Andalucía en el marco del Convenio Ramsar. Investig. Geográficas 2015, 63, 117–129. [Google Scholar] [CrossRef]
- Phinzi, K.; Ngetar, N.S. The assessment of water-borne erosion at catchment level using GIS-based RUSLE and remote sensing: A review. Int. Soil Water Conserv. Res. 2019, 7, 27–46. [Google Scholar] [CrossRef]
- Ramírez-Juidias, E.; Víquez-Urraco, F.; Noguero-Hernández, D. Sedimentary processes in the Isla Cristina salt-marshes: Geomorphological changes of landscape. Ocean Coast. Manag. 2017, 143, 148–153. [Google Scholar] [CrossRef]
- Lopac, N.; Jurdana, I.; Brnelić, A.; Krljan, T. Application of Laser Systems for Detection and Ranging in the Modern Road Transportation and Maritime Sector. Sensors 2022, 22, 5946. [Google Scholar] [CrossRef]
- Debnath, S.; Paul, M.; Debnath, T. Applications of LiDAR in Agriculture and Future Research Directions. J. Imaging 2023, 9, 57. [Google Scholar] [CrossRef]
- Sapkota, Y.; White, J.R. Marsh edge erosion and associated carbon dynamics in coastal Louisiana: A proxy for future wetland-dominated coastlines world-wide. Estuar. Coast. Shelf Sci. 2019, 226, 106289. [Google Scholar] [CrossRef]
- Castillo, J.M.; Luque, C.J.; Castellanos, E.M.; Figueroa, M.E. Causes and consequences of salt-marsh erosion in an Atlantic estuary in SW Spain. J. Coast. Conserv. 2000, 6, 89–96. [Google Scholar] [CrossRef]
- Houttuijn Bloemendaal, L.J.; FitzGerald, D.M.; Hughes, Z.J.; Novak, A.B.; Phippen, P. What controls marsh edge erosion? Geomorphology 2021, 386, 107745. [Google Scholar] [CrossRef]
- Martins, D.; Alves da Silva, A.; Duarte, J.; Canário, J.; Vieira, G. Changes in Vessel Traffic Disrupt Tidal Flats and Saltmarshes in the Tagus Estuary, Portugal. Estuaries Coasts 2023, 46, 1141–1156. [Google Scholar] [CrossRef]
- Gutiérrez-Mas, J.; García-López, S. Recent evolution of the river mouth intertidal zone at the Río San Pedro tidal channel (Cádiz Bay, SW Spain): Controlling factors of geomorphologic and depositional changes. Geol. Acta 2015, 13, 123–136. [Google Scholar] [CrossRef]
- Ramírez-Juidias, E. Use of satellite images to study erosion processes at Isla Cristina’s salta-marshes. South Florida J. Dev. 2021, 2, 4828–4836. [Google Scholar] [CrossRef]
- Soto, M.V.; Arriagada, J.; Cabello, M.; Molina, M.; Maerker, M. Geoamenazas Hidro-Geomorfológicas en subcuencas de los Andes Costeros de Chile Semiárido. Rev. Estud. Latinoam. Sobre Reducción Del Riesgo Desastr. REDER 2022, 6, 47–59. [Google Scholar] [CrossRef]
- de Sanjosé Blasco, J.; Gómez-Lende, M.; Sánchez-Fernández, M.; Serrano-Cañadas, E. Monitoring Retreat of Coastal Sandy Systems Using Geomatics Techniques: Somo Beach (Cantabrian Coast, Spain, 1875–2017). Remote Sens. 2018, 10, 1500. [Google Scholar] [CrossRef]
- Temima, I.; Bethel, G.; Fikrey, T. Spatio-Temporal Dynamic of Land Use and Land Cover in Andit Tid Watershed, Wet Frost/Afro-Alpine Highland of Ethiopia. Edelweiss Appl. Sci. Technol. 2021, 5, 33–38. [Google Scholar] [CrossRef]
- El Aoula, R.; Mhammdi, N.; Dezileau, L.; Mahe, G.; Kolker, A.S. Fluvial sediment transport degradation after dam construction in North Africa. J. Afr. Earth Sci. 2021, 182, 104255. [Google Scholar] [CrossRef]
- Ramírez-Juidias, E.; Pozo-Morales, L.; Galán-Ortiz, L. Procedimiento para la Obtención de una Imagen Teledetectada a Partir de Fotografía. Patent No. ES2537783B2, 12 June 2015. [Google Scholar]
- Delgado, A., Jr. Quantifying Coastal Marsh Erosion Using a LIDAR Terrestrial Laser Scanner: The Role of Waves, Soil, and Vegetation. Texas A & M University: College Station, TX, USA, 2016. [Google Scholar]
- Gobierno de España Ley 2/1989, de 18 de Julio, por la que se Aprueba el Inventario de Espacios Naturales Protegidos de Andalucía y se Establecen Medidas Adicionales para su Protección. Available online: https://www.boe.es/buscar/doc.php?id=BOE-A-1989-20636 (accessed on 21 October 2023).
- Rodríguez-Ramírez, A.; Villarías-Robles, J.J.R.; Celestino-Pérez, S.; López-Sáez, J.-A.; Pérez-Asensio, J.N.; León, Á. Extreme-Wave Events in the Guadalquivir Estuary in the Late Holocene: Paleogeographical and Cultural Implications. In Historical Earthquakes, Tsunamis and Archaeology in the Iberian Peninsula; Springer Nature: Singapore, 2022; pp. 127–150. [Google Scholar]
- Instituto Geográfico Nacional PNOA-LiDAR. Available online: https://pnoa.ign.es/web/portal/pnoa-lidar/presentacion (accessed on 15 November 2023).
- Centro Nacional de Información Geográfica Download Center. Available online: http://centrodedescargas.cnig.es/CentroDescargas/locale?request_locale=en (accessed on 11 October 2023).
- Matgen, P.; Schumann, G.; Henry, J.-B.; Hoffmann, L.; Pfister, L. Integration of SAR-derived river inundation areas, high-precision topographic data and a river flow model toward near real-time flood management. Int. J. Appl. Earth Obs. Geoinf. 2007, 9, 247–263. [Google Scholar] [CrossRef]
- Climate Research Group (University of Seville, S. Global Climate Monitor). Available online: http://www.globalclimatemonitor.org/# (accessed on 1 October 2023).
- Consejería de Medio Ambiente (Junta de Andalucía). Medio Siglo de Cambios en la Evolución de Usos del Suelo en Andalucía 1956–2007; Junta de Andalucía: Seville, Spain, 2011.
- REDIAM (Junta de Andalucía) Download REDIAM Service. Available online: https://portalrediam.cica.es/descargas (accessed on 7 October 2023).
Check Point | DEM 2015 (m) | DEM 2020 (m) | End 2021 DEM Estimation (m) |
---|---|---|---|
1 | 0.000 | 0.000 | 0.000 |
2 | 0.007 | 0.000 | 0.000 |
3 | 0.014 | 0.011 | 0.016 |
4 | 0.027 | 0.020 | 0.026 |
5 | 0.039 | 0.033 | 0.037 |
6 | 0.041 | 0.040 | 0.043 |
7 | 0.050 | 0.050 | 0.054 |
8 | 0.072 | 0.061 | 0.267 |
9 | 0.655 | 0.363 | 0.570 |
10 | 0.692 | 0.673 | 0.691 |
11 | 0.724 | 0.708 | 0.730 |
12 | 0.779 | 0.751 | 0.771 |
13 | 0.788 | 0.783 | 0.787 |
14 | 0.794 | 0.791 | 0.794 |
15 | 0.800 | 0.797 | 0.805 |
16 | 0.823 | 0.812 | 0.834 |
17 | 0.881 | 0.852 | 0.926 |
18 | 1.084 | 0.982 | 1.054 |
19 | 1.102 | 1.093 | 1.103 |
20 | 1.125 | 1.113 | 1.412 |
21 | 1.969 | 1.547 | 1.845 |
SS | df | MS | F | p | |
---|---|---|---|---|---|
Treatment (between groups) | 0.047329 | 2 | 0.023664 | 5.03 | 0.011256 |
Error | 0.1872 | 40 | 0.0047 | ||
Block (DEMs) | 15.5033 | 20 | |||
Total | 15.737829 | 62 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ramírez-Juidias, E.; Amaro-Mellado, J.-L. Prediction of Erosive Processes in the Río Piedras and Flecha de El Rompido Salt Marsh (Huelva, Spain) Using Iterative Models and GIS. Limnol. Rev. 2023, 23, 190-202. https://doi.org/10.3390/limnolrev23030012
Ramírez-Juidias E, Amaro-Mellado J-L. Prediction of Erosive Processes in the Río Piedras and Flecha de El Rompido Salt Marsh (Huelva, Spain) Using Iterative Models and GIS. Limnological Review. 2023; 23(3):190-202. https://doi.org/10.3390/limnolrev23030012
Chicago/Turabian StyleRamírez-Juidias, Emilio, and José-Lázaro Amaro-Mellado. 2023. "Prediction of Erosive Processes in the Río Piedras and Flecha de El Rompido Salt Marsh (Huelva, Spain) Using Iterative Models and GIS" Limnological Review 23, no. 3: 190-202. https://doi.org/10.3390/limnolrev23030012
APA StyleRamírez-Juidias, E., & Amaro-Mellado, J. -L. (2023). Prediction of Erosive Processes in the Río Piedras and Flecha de El Rompido Salt Marsh (Huelva, Spain) Using Iterative Models and GIS. Limnological Review, 23(3), 190-202. https://doi.org/10.3390/limnolrev23030012