Abstract
Understanding how emotions and psychological states influence both individual and collective actions is critical for expressing the real complexity of biosocial and ecological systems. Recent breakthroughs in mathematical modeling have created new opportunities for systematically integrating these emotion-specific elements into dynamic frameworks ranging from human health to animal ecology and socio-technical systems. This review builds on mathematical modeling approaches by bringing together insights from neuroscience, psychology, epidemiology, ecology, and artificial intelligence to investigate how psychological effects such as fear, stress, and perception, as well as memory, motivation, and adaptation, can be integrated into modeling efforts. This article begins by examining the influence of psychological factors on brain networks, mental illness, and chronic physical diseases (CPDs), followed by a comparative discussion of model structures in human and animal psychology. It then turns to ecological systems, focusing on predator–prey interactions, and investigates how behavioral responses such as prey refuge, inducible defense, cooperative hunting, group behavior, etc., modulate population dynamics. Further sections investigate psychological impacts in epidemiological models, in which risk perception and fear-driven behavior greatly affect disease spread. This review article also covers newly developing uses in artificial intelligence, economics, and decision-making, where psychological realism improves model accuracy. Through combining these several strands, this paper argues for a more subtle, emotionally conscious way to replicate intricate adaptive systems. In fact, this study emphasizes the need to include emotion and cognition in quantitative models to improve their descriptive and predictive ability in many biosocial and environmental contexts.