Modeling of Nonlinear Systems: Method of Optimal Injections
Abstract
:1. Introduction
1.1. Motivation
1.2. Short Description of the Method
1.3. Novelty and Advantages
2. The Proposed Approach
2.1. Some Special Notation
2.2. Generic Structure of Approximating Operator
2.3. Statement of the Problem
2.4. Related Work
2.4.1. Low-Rank Approximations
2.4.2. Tensor Methods
2.4.3. System Identification and Modeling
2.5. Contribution
2.5.1. Challenges of High-Dimensionality
2.5.2. Challenges of Accuracy
2.5.3. Novelties and Relation to Existing Concepts
- ‘degree’ p of ,
- matrices ,
- optimal injections ,
- values of in (4), and
- dimensions of injections .
3. Preliminary Results
3.1. Determination of Pairwise Uncorrelated Vectors
3.2. Determination of Matrices That Solve the Problem in (16), (8) and (9)
3.3. Error Analysis Associated with the Solution of Problem in (16), (8) and (9)
3.4. Particular Case: No Reduction of Vector Dimensionality
4. Solution of Problem Given by (7), (8), (9)
4.1. Device of Solution
4.2. Determination of in Step 1
4.3. Determination of Matrices in Step 3
4.4. Error Analysis of the Solution of Problem in (7), (8), (9)
- Here, for and . Therefore,Taking into account (81), we denoteThen, by (82),For let us prove inequality (80) by induction. To this end, we first consider the basis step of the induction, which consists of cases and .
- The basis step: Case . If then the i-th iteration loop (see Section 4.1) impliesIn particular, for and with ,Further, because for and , thenTherefore, for ,But since , and , for , thenTaking into account (88), we denote
- That is, for anyAt the same time,Denote . By (91), Thus,
- The inductive step. For let us suppose that if , and and thenBelow, we show that then and , i.e., that (80) is true.To this end, for the i-th iterative loop, let us consider case where . We haveThat is, for anyAt the same time,Denote . By the assumption , thenFurther, for let us now consider the case . ThenTherefore, for any and ,We also need the following. By (55), and solveSince by the assumption, , then (105) is equivalent toThus,Thus, (80) is true.
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Amat, S.; Busquier, S.; Negra, M. Adaptive Approximation of Nonlinear Operators. Numer. Funct. Anal. Optim. 2004, 25, 397–405. [Google Scholar] [CrossRef]
- Bruno, V.I. An approximate Weierstrass theorem in topological vector space. J. Approx. Theory 1984, 42, 1–3. [Google Scholar] [CrossRef]
- Chen, T.; Chen, H. Universal approximation to nonlinear operators by neural networks with arbitrary activation functions and its application to dynamical systems. IEEE Trans. Neural Netw. 1995, 6, 911–917. [Google Scholar] [CrossRef]
- Dingle, K.; Camargo, C.Q.; Louis, A.A. Input–output maps are strongly biased towards simple outputs. Nat. Commun. 2018, 9, 761. [Google Scholar] [CrossRef]
- Gallman, P.G.; Narendra, K. Representations of nonlinear systems via the Stone-Weierstrass theorem. Automatica 1976, 12, 619–622. [Google Scholar] [CrossRef]
- Howlett, P.G.; Torokhti, A.P.; Pearce, C.E.M. A Philosophy for the Modelling of Realistic Non-linear Systems. Proc. Am. Math. Soc. 2003, 131, 353–363. [Google Scholar] [CrossRef]
- Istrăţescu, V.I. A Weierstrass theorem for real Banach spaces. J. Approx. Theory 1977, 19, 118–122. [Google Scholar] [CrossRef]
- Prenter, P.M. A Weierstrass Theorem for Real, Separable Hilbert Spaces. J. Approx. Theory 1970, 4, 341–357. [Google Scholar] [CrossRef]
- Prolla, J.B.; Machado, S. Weierstrass-Stone theorems for set-valued mappings. J. Approx. Theory 1982, 36, 1–15. [Google Scholar] [CrossRef]
- Rao, N.V. Stone-Weierstrass theorem revisited. Am. Math. Mon. 2005, 112, 726–729. [Google Scholar] [CrossRef]
- Sandberg, I.W. Notes on uniform approximation of time–varying systems on finite time intervals. IEEE Trans. Circuits Syst. I Fundam. Theory Appl. 1998, 45, 863–864. [Google Scholar] [CrossRef]
- Sandberg, I.W. Time delay polynomial networks and quality of approximation. IEEE Trans. Circuits Syst. I Fundam. Theory Appl. 2000, 47, 40–49. [Google Scholar] [CrossRef]
- Sandberg, I.W. R+ Fading Memory and Extensions of Input-Output Maps. IEEE Trans. Circuits Syst. I Fundam. Theory Appl. 2002, 49, 1586–1591. [Google Scholar] [CrossRef]
- Timofte, V. Stone-Weierstrass theorem revisited. J. Approx. Theory 2005, 536, 45–59. [Google Scholar] [CrossRef]
- Piotrowski, T.; Cavalcante, R.; Yamada, I. Stochastic MV-PURE Estimator-Robust Reduced-Rank Estimator for Stochastic Linear Model. IEEE Trans. Signal Process. 2009, 57, 1293–1303. [Google Scholar] [CrossRef]
- Hua, Y.; Nikpour, M.; Stoica, P. Optimal reduced-rank estimation and filtering. IEEE Trans. Signal Process. 2001, 49, 457–469. [Google Scholar]
- Zhu, X.L.; Zhang, X.D.; Ding, Z.Z.; Jia, Y. Adaptive nonlinear PCA algorithms for blind source separation without prewhitening. IEEE Trans. Circuits Syst. I Regul. Pap. 2006, 53, 745–753. [Google Scholar]
- Wang, Q.; Jing, Y. New rank detection methods for retuced-rank MIMO systems. EURASIP J. Wirel. Comm. Netw. 2015, 2015, 1–16. [Google Scholar] [CrossRef]
- Bai, L.; Dou, S.; Xiao, Z.; Choi, J. Doubly iterative multiple-input-multiple-output-bit-interleaved coded modulation receiver with joint channel estimation and randomised sampling detection. IET Signal Process. 2016, 10, 335–341. [Google Scholar] [CrossRef]
- Brillinger, D.R. Time Series: Data Analysis and Theory; SIAM: San Francisco, CA, USA, 2001. [Google Scholar]
- Jolliffe, I. Principal Component Analysis, 2nd ed.; Springer: New York, NY, USA, 2002. [Google Scholar]
- Bühlmann, P.; van de Geer, S. Statistics for High-Dimensional Data; Springer: New York, NY, USA, 2011. [Google Scholar]
- She, Y.; Li, S.; Wu, D. Robust Orthogonal Complement Principal Component Analysis. J. Am. Stat. Assoc. 2016, 111, 763–771. [Google Scholar] [CrossRef]
- Torokhti, A.; Friedland, S. Towards theory of generic Principal Component Analysis. J. Multivar. Anal. 2009, 100, 661–669. [Google Scholar] [CrossRef]
- Saghri, J.A.; Schroeder, S.; Tescher, A.G. Adaptive two-stage Karhunen-Loeve-transform scheme for spectral decorrelation in hyperspectral bandwidth compression. Opt. Eng. 2010, 49, 057001. [Google Scholar] [CrossRef]
- Kmuntchav, R.; Kountcheva, R. Hierarchical Adaptive KL-Based Transform: Algorithms and Applications. In Computer Vision in Control Systems-1; Favorskaya, M.N., Jain, L.C., Eds.; Springer: Cham, Switzerland, 2015; Volume 73, pp. 91–136. [Google Scholar]
- de Moura, E.P.; de Abreu Melo Junior, F.; Damasceno, F.; Figueiredo, L.; de Andrade, C.; de Almeida, M. Classification of imbalance levels in a scaled wind turbine through detrended fluctuation analysis of vibration signals. Renew. Energy 2016, 96 Pt A, 993–1002. [Google Scholar] [CrossRef]
- Azimia, R.; Ghayekhlooa, M.; Ghofranib, M.; Sajedic, H. A novel clustering algorithm based on data transformation approaches. Expert Syst. Appl. 2017, 76, 59–70. [Google Scholar] [CrossRef]
- Burge, M.J.; Burger, W. Digital Image Processing—An Algorithmic Introduction Using Java; Springer: London, UK, 2006. [Google Scholar]
- Phophalia, A.; Rajwade, A.; Mitra, S.K. Rough set based image denoising for brain MR images. Signal Process. 2014, 103, 24–35. [Google Scholar] [CrossRef]
- Chenn, S.; Billings, S.A.; Grant, P. Non-linear system identification using neural networks. Int. J. Control 1990, 51, 1191–1214. [Google Scholar] [CrossRef]
- Chenn, S.; Billings, S.A. Neural networks for nonlinear dynamic system modelling and identification. Int. J. Control 1992, 56, 319–346. [Google Scholar] [CrossRef]
- Fomin, V.N.; Ruzhansky, M.V. Abstract Optimal Linear Filtering. SIAM J. Control Optim. 2000, 38, 1334–1352. [Google Scholar] [CrossRef]
- Temlyakov, V.N. Nonlinear Methods of Approximation. Found. Comput. Math. 2003, 3, 33–107. [Google Scholar] [CrossRef]
- Torokhti, A.; Howlett, P. Best approximation of identity mapping: The case of variable memory. J. Approx. Theory 2006, 143, 111–123. [Google Scholar] [CrossRef]
- Liu, W.; Zhang, H.; Yu, K.; Tan, X. Optimal linear filtering for networked systems with communication constraints, fading measurements, and multiplicative noises. Int. J. Adapt. Control Signal Process. 2016. [Google Scholar] [CrossRef]
- Aminzare, Z.; Sontag, E.D. Synchronization of Diffusively-Connected Nonlinear Systems: Results Based on Contractions with Respect to General Norms. IEEE Trans. Netw. Sci. Eng. 2014, 1, 91–106. [Google Scholar] [CrossRef]
- Schneider, M.K.; Willsky, A.S. A Krylov Subspace Method for Covariance Approximation and Simulation of Random Processes and Fields. Multidimens. Syst. Signal Process. 2003, 14, 295–318. [Google Scholar] [CrossRef]
- Chenn, S.; Billings, S.A. Representations of non-linear systems: The NARMAX model. Int. J. Control 1989, 49, 1013–1032. [Google Scholar] [CrossRef]
- Piroddi, L.; Spinelli, W. An identification algorithm for polynomial NARX models based on simulation error minimization. Int. J. Control 2003, 76, 1767–1781. [Google Scholar] [CrossRef]
- Alter, O.; Golub, G.H. Singular value decomposition of genome-scale mRNA lengths distribution reveals asymmetry in RNA gel electrophoresis band broadening. Process. Natl. Acad. Sci. USA 2006, 103, 11828–11833. [Google Scholar] [CrossRef]
- Gianfelici, F.; Turchetti, C.; Crippa, P. A non-probabilistic recognizer of stochastic signals based on KLT. Signal Process. 2009, 89, 422–437. [Google Scholar] [CrossRef]
- Formaggia, L.; Quarteroni, A.; Veneziani, A. (Eds.) Cardiovascular Mathematics—Modeling and Simulation of the Circulatory System; Springer: Milano, Italy, 2009; Volume 1. [Google Scholar]
- Ambrosi, D.; Quarteroni, A.; Rozza, G. (Eds.) Modelling of Physiological Flows; Springer: Milano, Italy, 2011; Volume V. [Google Scholar]
- Piotrowski, T.; Yamada, I. Performance of the stochastic MV-PURE estimator in highly noisy settings. J. Frankl. Insitute 2014, 351, 3339–3350. [Google Scholar] [CrossRef]
- Poor, H.V. An Introduction to Signal Processing and Estimation, 2nd ed.; Springer: New York, NY, USA, 2001. [Google Scholar]
- Torokhti, A.; Soto-Quiros, P. Optimal modeling of nonlinear systems: Method of variable injections. Proyecciones 2024, 43, 189–224. [Google Scholar] [CrossRef]
- Yang, S.; Xing, T.; Ke, C.; Liang, J.; Ke, X. Effect of wavefront distortion on the performance of coherent detection systems: Theoretical analysis and experimental research. Photonics 2023, 10, 493. [Google Scholar] [CrossRef]
- Stanković, L.; Brajović, M.; Stanković, I.; Lerga, J.; Daković, M. RANSAC-based signal denoising using compressive sensing. Circuits Syst. Signal Process. 2021, 40, 3907–3928. [Google Scholar] [CrossRef]
- Wang, Y.; Cheng, K.; Zhao, S.; Xu, E. Human ear image recognition method using PCA and Fisherface complementary double feature extraction. J. Artif. Intell. Technol. 2023, 3, 18–24. [Google Scholar] [CrossRef]
- Al-Saffar, N.F.H.; Al-Saiq, I.R. Symmetric text encryption scheme based Karhunen Loeve transform. J. Discret. Math. Sci. Cryptogr. 2022, 25, 2773–2781. [Google Scholar] [CrossRef]
- Soto-Quiros, P.; Torokhti, A. Fast random vector transforms in terms of pseudo-inverse within the Wiener filtering paradigm. J. Comput. Appl. Math. 2024, 448, 115927. [Google Scholar] [CrossRef]
- Howlett, P.; Torokhti, A. Optimal approximation of a large matrix by a sum of projected linear mappings on prescribed subspaces. Electron. J. Linear Algebra 2024, 40, 585–605. [Google Scholar] [CrossRef]
- Torokhti, A.; Howlett, P. Optimal estimation of distributed highly noisy signals within KLT-Wiener archetype. Digit. Signal Process. 2023, 143, 104225. [Google Scholar] [CrossRef]
- Howlett, P.; Torokhti, A. An optimal linear filter for estimation of random functions in Hilbert space. ANZIAM J. 2020, 62, 274–301. [Google Scholar] [CrossRef]
- Ledoit, O.; Wolf, M. A well-conditioned estimator for large-dimensional covariance matrices. J. Multivar. Anal. 2004, 88, 365–411. [Google Scholar] [CrossRef]
- Ledoit, O.; Wolf, M. Nonlinear shrinkage estimation of large-dimensional covariance matrices. Ann. Stat. 2012, 40, 1024–1060. [Google Scholar] [CrossRef]
- Adamczak, R.; Litvak, A.E.; Pajor, A.; Tomczak-Jaegermann, N. Quantitative estimates of the convergence of the empirical covariance matrix in log-concave ensembles. J. Am. Math. Soc. 2009, 2, 535–561. [Google Scholar] [CrossRef]
- Vershynin, R. How Close is the Sample Covariance Matrix to the Actual Covariance Matrix? J. Theor. Probab. 2012, 25, 655–686. [Google Scholar] [CrossRef]
- Won, J.-H.; Lim, J.; Kim, S.-J.; Rajaratnam, B. Condition-number-regularized covariance estimation. J. R. Stat. Soc. Ser. B 2013, 75, 427–450. [Google Scholar] [CrossRef] [PubMed]
- Yang, R.; Berger, J.O. Estimation of a covariance matrix using the reference prior. Ann. Statist. 1994, 22, 1195–1211. [Google Scholar] [CrossRef]
- Ben-Israel, A.; Greville, T.N.E. Generalized Inverses: Theory and Applications, 2nd ed.; Springer: New York, NY, USA, 2003. [Google Scholar]
- Hotelling, H. Analysis of a Complex of Statistical Variables into Principal Components. J. Educ. Psychol. 1933, 6, 417–441 and 498–520. [Google Scholar] [CrossRef]
- Karhunen, K. Über Lineare Methoden in der Wahrscheinlichkeitsrechnung. Ann. Acad. Sci. Fenn. Ser. A. I. Math.-Phys. 1947, 1, 1–79. [Google Scholar]
- Loève, M. Fonctions aléatoires de second ordre. In Processus Stochastiques et Mouvement Brownien; Lévy, P., Ed.; Hermann: Paris, France, 1948. [Google Scholar]
- Scharf, L. The SVD and reduced rank signal processing. Signal Process. 1991, 25, 113–133. [Google Scholar] [CrossRef]
- Hua, Y.; Liu, W. Generalized Karhunen-Loeve transform. IEEE Signal Process. Lett. 1998, 5, 141–142. [Google Scholar]
- Torokhti, A.; Soto-Quiros, P. Generalized Brillinger-Like Transforms. IEEE Signal Process. Lett. 2016, 23, 843–847. [Google Scholar] [CrossRef]
- Torokhti, A.; Miklavcic, S. Data compression under constraints of causality and variable finite memory. Signal Process. 2010, 90, 2822–2834. [Google Scholar] [CrossRef]
- Lathauwer, L.D.; Moor, B.D.; Vandewalle, J. On the Best Rank-1 and Rank-(R1,R2, …, RN) Approximation of Higher-Order Tensors. SIAM J. Matrix Anal. Appl. 2006, 21, 1324–1342. [Google Scholar] [CrossRef]
- Grasedyck, L.; Kressner, D.; Tobler, C. A literature survey of low-rank tensor approximation techniques. GAMM-Mitteilungen 2013, 36, 53–78. [Google Scholar] [CrossRef]
- Friedland, S.; Tammali, V. Low-Rank Approximation of Tensors. In Numerical Algebra, Matrix Theory, Differential-Algebraic Equations and Control Theory; Benner, P., Bollhöfer, M., Kressner, D., Mehl, C., Stykel, T., Eds.; Springer: Cham, Switzerland, 2015; pp. 377–411. [Google Scholar]
- Billings, S.A. Nonlinear System Identification-Narmax Methods in the Time, Frequency, and Spatio-Temporal Domains; John Wiley and Sons, Ltd.: Hoboken, NJ, USA, 2013. [Google Scholar]
- Schoukens, M.; Tiels, K. Identification of Block-oriented Nonlinear Systems Starting from Linear Approximations: A Survey. Automatica 2017, 85, 272–292. [Google Scholar] [CrossRef]
- Chen, B.; He, S.; Li, Z.; Zhang, S. Maximum Block Improvement and Polynomial Optimization. SIAM J. Optim. 2012, 22, 87–107. [Google Scholar] [CrossRef]
- Abed-Meraim, K.; Qui, W.; Hua, Y. Blind system identification. Proc. IEEE 1997, 85, 1310–1322. [Google Scholar] [CrossRef]
- Hua, Y. Blind methods of system identification. Circuits Syst. Signal Process. 2002, 21, 91–108. [Google Scholar] [CrossRef]
- Shi, X. Mathematical Description of Blind Signal Processing. In Blind Signal Processing: Theory and Practice; Springer: Berlin/Heidelberg, Germany, 2011; pp. 27–59. [Google Scholar]
- Torokhti, A.; Howlett, P. Optimal Fixed Rank Transform of the Second Degree. IEEE Trans. Circuits Syst. II Analog. Digit. Signal Process. 2001, 48, 309–315. [Google Scholar] [CrossRef]
- Torokhti, A.; Howlett, P. Computational Methods for Modelling of Nonlinear Systems; Elsevier: Amsterdam, The Netherlands, 2007. [Google Scholar]
- Friedland, S.; Torokhti, A. Generalized Rank-Constrained Matrix Approximations. SIAM J. Matrix Anal. Appl. 2007, 29, 656–659. [Google Scholar] [CrossRef]
- Liu, X.; Li, W.; Wang, H. Rank constrained matrix best approximation problem with respect to (skew) Hermitian matrices. J. Comput. Appl. Math. 2017, 319, 77–86. [Google Scholar] [CrossRef]
- Boutsidis, C.; Woodruff, D.P. Optimal CUR Matrix Decompositions. SIAM J. Comput. 2017, 46, 543–589. [Google Scholar] [CrossRef]
- Wang, H. Rank constrained matrix best approximation problem. Appl. Math. Lett. 2015, 50, 98–104. [Google Scholar] [CrossRef]
- Golub, G.; Loan, C.F.V. Matrix Computations; Jons Hopkins University Press: Baltimore, MD, USA, 1996. [Google Scholar]
- Kanwal, R. Linear Integral Equations; Birkhäuser Boston: Boston, MA, USA, 1996. [Google Scholar]
Approximating Operator | MSE | ||||||
---|---|---|---|---|---|---|---|
100 | N/A | N/A | 50 | N/A | N/A | 8.30 | |
100 | 25 | N/A | 25 | 25 | N/A | 7.93 | |
100 | 25 | 500 | 17 | 17 | 16 | 7.03 |
Approximating Operator | MSE | ||||||
---|---|---|---|---|---|---|---|
100 | N/A | N/A | 50 | N/A | N/A | 8.30 | |
100 | 200 | N/A | 25 | 25 | N/A | 7.61 | |
100 | 200 | 500 | 17 | 17 | 16 | 6.28 |
i | ||||||||
---|---|---|---|---|---|---|---|---|
400 | N/A | N/A | 200 | N/A | N/A | N/A | 30.9 | |
400 | 400 | 400 | 100 | 100 | N/A | 14 | 21.8 | |
400 | 400 | 400 | 67 | 67 | 66 | 14 | 18.9 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Torokhti, A.; Soto-Quiros, P. Modeling of Nonlinear Systems: Method of Optimal Injections. Math. Comput. Appl. 2025, 30, 26. https://doi.org/10.3390/mca30020026
Torokhti A, Soto-Quiros P. Modeling of Nonlinear Systems: Method of Optimal Injections. Mathematical and Computational Applications. 2025; 30(2):26. https://doi.org/10.3390/mca30020026
Chicago/Turabian StyleTorokhti, Anatoli, and Pablo Soto-Quiros. 2025. "Modeling of Nonlinear Systems: Method of Optimal Injections" Mathematical and Computational Applications 30, no. 2: 26. https://doi.org/10.3390/mca30020026
APA StyleTorokhti, A., & Soto-Quiros, P. (2025). Modeling of Nonlinear Systems: Method of Optimal Injections. Mathematical and Computational Applications, 30(2), 26. https://doi.org/10.3390/mca30020026