Radical Petrov–Galerkin Approach for the Time-Fractional KdV–Burgers’ Equation
Abstract
1. Introduction
2. Preliminaries and Essential Relations
2.1. The Fractional Derivative in the Caputo Sense
2.2. An Account on the SGPs
3. Petrov–Galerkin Approach for the Time-Fractional KdV–Burgers’ Equation
3.1. Trial Functions
3.2. Petrov–Galerkin Solution for the Time-Fractional KdV–Burgers’ Equation
4. Error Bound
5. Illustrative Examples
6. Concluding Remarks
Algorithm 1 Coding algorithm for the proposed technique |
Input and . |
Step 1. Using transformation (36) to convert (13) with the conditions (14)–(15), |
into modified equation (38) under the homogeneous conditions (39)–(40). |
Step 2. Assume an approximate solution as in (43). |
Step 3. Apply Petrov–Galerkin method to obtain the system in (49). |
Step 4. Use Theorem 3 to get the elements of and |
Step 5. Use FindRoot command with initial guess |
to solve the system (49) to get . |
Output |
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Saichev, A.I.; Woyczynski, W.A. Density fields in Burgers and KdV–Burgers turbulence. SIAM J. Appl. Math. 1996, 56, 1008–1038. [Google Scholar] [CrossRef]
- Gallone, M.; Marian, M.; Ponno, A.; Ruffo, S. Burgers turbulence in the Fermi-Pasta-Ulam-Tsingou chain. Phys. Rev. Lett. 2022, 129, 114101. [Google Scholar] [CrossRef] [PubMed]
- Samokhin, A. Nonlinear waves in layered media: Solutions of the KdV–Burgers equation. J. Geom. Phys. 2018, 130, 33–39. [Google Scholar] [CrossRef]
- Hilfer, R. Applications of Fractional Calculus in Physics; World Scientific: Singapore, 2000. [Google Scholar]
- Butzer, P.L.; Westphal, U. An introduction to fractional calculus. In Applications of Fractional Calculus in Physics; World Scientific: Singapore, 2000; pp. 1–85. [Google Scholar]
- Daftardar-Gejji, V. Fractional Calculus; Alpha Science International Limited: Oxford, UK, 2013. [Google Scholar]
- Loverro, A. Fractional Calculus: History, Definitions and Applications for the Engineer; Rapport Technique; University of Notre Dame, Department of Aerospace and Mechanical Engineering: Notre Dame, IN, USA, 2004; pp. 1–28. [Google Scholar]
- Ganie, A.H.; Mofarreh, F.; Khan, A. On new computations of the time-fractional nonlinear KdV-Burgers equation with exponential memory. Phys. Scr. 2024, 99, 045217. [Google Scholar] [CrossRef]
- Mohammadi, A.; Tari, A. A new approach to numerical solution of the time-fractional KdV-Burgers equations using least squares support vector regression. J. Math. Model. 2024, 583–602. [Google Scholar] [CrossRef]
- Ahmed, N.; Baber, M.Z.; Iqbal, M.S.; Akgül, A.; Rafiq, M.; Raza, A.; Chowdhury, M.S.R. Investigation of soliton structures for dispersion, dissipation, and reaction time-fractional KdV–Burgers–Fisher equation with the noise effect. Int. J. Model. Simul. 2024, 1–17. [Google Scholar] [CrossRef]
- Cao, H.; Cheng, X.; Zhang, Q. Numerical simulation methods and analysis for the dynamics of the time-fractional KdV equation. Phys. D Nonlinear Phenom. 2024, 460, 134050. [Google Scholar] [CrossRef]
- Burqan, A.; Khandaqji, M.; Al-Zhour, Z.; El-Ajou, A.; Alrahamneh, T. Analytical Approximate Solutions of Caputo Fractional KdV–Burgers Equations Using Laplace Residual Power Series Technique. J. Appl. Math. 2024, 2024, 7835548. [Google Scholar] [CrossRef]
- He, Y.; Zhao, X. Numerical Integrators for Dispersion-Managed KdV Equation. Commun. Comput. Phys. 2022, 31, 1180–1214. [Google Scholar]
- Li, B.; Wu, Y.; Zhao, X. Gauge-transformed exponential integrator for generalized KdV equations with rough data. SIAM J. Numer. Anal. 2023, 61, 1689–1715. [Google Scholar] [CrossRef]
- Hong, X.; Wei, Q.; Zhao, X. Comparison of different discontinuous Galerkin methods based on various reformulations for gKdV equation: Soliton dynamics and blowup. Comput. Phys. Commun. 2024, 300, 109180. [Google Scholar] [CrossRef]
- Adjibi, K.; Martinez, A.; Mascorro, M.; Montes, C.; Oraby, T.; Sandoval, R.; Suazo, E. Exact solutions of stochastic Burgers—Korteweg de Vries type equation with variable coefficients. Partial. Differ. Equations Appl. Math. 2024, 11, 100753. [Google Scholar] [CrossRef]
- Iqbal, N.; Hussain, S.; Hamza, A.E.; Abdullah, A.; Mohammed, W.W.; Yar, M. Fractional dynamics study: Analytical solutions of modified Kordeweg-de Vries equation and coupled Burger’s equations using Aboodh transform. Sci. Rep. 2024, 14, 12751. [Google Scholar] [CrossRef] [PubMed]
- Goufo, E.F.D.; Tenkam, H.M.; Khumalo, M. A behavioral analysis of KdVB equation under the law of Mittag–Leffler function. Chaos Solitons Fractals 2019, 125, 139–145. [Google Scholar] [CrossRef]
- Chen, H.; Lin, X.; Sun, T.; Tang, Y.; Zhang, J. Effective numerical simulation of time fractional KdV equation with weakly singular solutions. Int. J. Model. Simul. Sci. Comput. 2024, 15, 2450020. [Google Scholar] [CrossRef]
- Pawar, C.; Takale, K.; Gaikwad, S. Comparative Study of Solutions of Fractional Order Mixed KdV Burger’s Equation. Indian J. Sci. Technol. 2024, 17, 2591–2598. [Google Scholar] [CrossRef]
- Magdy, E.; Atta, A.G.; Moatimid, G.M.; Abd-Elhameed, W.M.; Youssri, Y.H. Enhanced Fifth-Kind Chebyshev Polynomials Petrov–Galerkin Algorithm for Time-Fractional Fokker–Planck Equation. Int. J. Mod. Phys. C 2024, 35, 2450162. [Google Scholar] [CrossRef]
- Youssri, Y.H.; Ismail, M.; Atta, A.G. Chebyshev Petrov–Galerkin Procedure for the Time-Fractional Heat Equation with Nonlocal Conditions. Phys. Scr. 2024, 99, 015251. [Google Scholar] [CrossRef]
- Youssri, Y.H.; Atta, A.G. Modal Spectral Tchebyshev Petrov–Galerkin Stratagem for the Time-Fractional Nonlinear Burgers’ Equation. Iran. J. Numer. Anal. Optim. 2024, 14, 167–190. [Google Scholar]
- Moustafa, M.; Youssri, Y.H.; Atta, A.G. Explicit Chebyshev Petrov–Galerkin Scheme for Time-Fractional Fourth-Order Uniform Euler–Bernoulli Pinned–Pinned Beam Equation. Nonlinear Eng. 2023, 12, 20220308. [Google Scholar] [CrossRef]
- Podlubny, I. Fractional Differential Equations: An Introduction to Fractional Derivatives, Fractional Differential Equations, to Methods of Their Solution and Some of Their Applications; Elsevier: Amsterdam, The Netherlands, 1998. [Google Scholar]
- Doha, E. On the coefficients of differentiated expansions and derivatives of Jacobi polynomials. J. Phys. A Math. Gen. 2002, 35, 3467. [Google Scholar] [CrossRef]
- Cen, D.; Wang, Z.; Mo, Y. Second order difference schemes for time-fractional KdV–Burgers’ equation with initial singularity. Appl. Math. Lett. 2021, 112, 106829. [Google Scholar] [CrossRef]
- Zhao, X.; Wang, L.L.; Xie, Z. Sharp error bounds for Jacobi expansions and Gegenbauer–Gauss quadrature of analytic functions. SIAM J. Numer. Anal. 2013, 51, 1443–1469. [Google Scholar] [CrossRef]
Our Method at | ||||
---|---|---|---|---|
Method in [27] at , , | ||||
0.4 | 9.8238 | 4.16926 | 1.93038 | 9.64377 |
0.8 | 6.4395 | 3.39356 | 1.57365 | 8.3452 |
(0.1,0.1) | ||||
(0.2,0.2) | ||||
(0.3,0.3) | ||||
(0.4,0.4) | ||||
(0.5,0.5) | ||||
(0.6,0.6) | ||||
(0.7,0.7) | ||||
(0.8,0.8) | ||||
(0.9,0.9) |
t | ||||
---|---|---|---|---|
0.1 | ||||
0.2 | ||||
0.3 | ||||
0.4 | ||||
0.5 | ||||
0.6 | ||||
0.7 | ||||
0.8 | ||||
0.9 |
M | |||
---|---|---|---|
2 | |||
4 | |||
6 | |||
8 | |||
9 |
x | ||||
---|---|---|---|---|
0.1 | ||||
0.2 | ||||
0.3 | ||||
0.4 | ||||
0.5 | ||||
0.6 | ||||
0.7 | ||||
0.8 | ||||
0.9 |
CPU Time | CPU Time | CPU Time | CPU Time | |||||
---|---|---|---|---|---|---|---|---|
0.1 | 15.156 | 18.344 | 20.281 | 35.5 | ||||
0.3 | 16.14 | 16.422 | 21.546 | 35.579 | ||||
0.7 | 13.797 | 16.327 | 20.391 | 37.858 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Youssri, Y.H.; Atta, A.G. Radical Petrov–Galerkin Approach for the Time-Fractional KdV–Burgers’ Equation. Math. Comput. Appl. 2024, 29, 107. https://doi.org/10.3390/mca29060107
Youssri YH, Atta AG. Radical Petrov–Galerkin Approach for the Time-Fractional KdV–Burgers’ Equation. Mathematical and Computational Applications. 2024; 29(6):107. https://doi.org/10.3390/mca29060107
Chicago/Turabian StyleYoussri, Youssri Hassan, and Ahmed Gamal Atta. 2024. "Radical Petrov–Galerkin Approach for the Time-Fractional KdV–Burgers’ Equation" Mathematical and Computational Applications 29, no. 6: 107. https://doi.org/10.3390/mca29060107
APA StyleYoussri, Y. H., & Atta, A. G. (2024). Radical Petrov–Galerkin Approach for the Time-Fractional KdV–Burgers’ Equation. Mathematical and Computational Applications, 29(6), 107. https://doi.org/10.3390/mca29060107