# Analytical Solutions of Microplastic Particles Dispersion Using a Lotka–Volterra Predator–Prey Model with Time-Varying Intraspecies Coefficients

^{1}

^{2}

^{3}

^{*}

## Abstract

**:**

## 1. Introduction

## 2. Materials and Methods

## 3. Results

#### 3.1. Maximum Reduction of Predatory Performance: $\alpha =0$ and ${\alpha}^{\prime}=0$

^{3}) versus time (months)—where we observe two patterns: 1—the growth of the prey population at a rate ${\beta}_{1}\left(t\right)$ accompanied by the extinction of predators and 2—the extinction of both species.

#### 3.2. Reduction of Predatory Performance with No Prey Eaten by Predator: α = 0

^{3}) versus time (months)—where we observe the same pattern, characterized by the growth of the prey population at a rate ${\beta}_{1}\left(t\right)$ accompanied by the predator “population explosion”.

#### 3.3. Reduction of Predatory Performance with No Increase in the Number of Predators Due to the Feeding of Prey: α′ = 0

^{3}) versus time (months)—where we observe the same two patterns of the Section 3.1, where $\alpha ={\alpha}^{\prime}=0$.

## 4. Discussion

## 5. Conclusions

## Author Contributions

## Funding

## Data Availability Statement

## Acknowledgments

## Conflicts of Interest

## Abbreviations

MP | Microplastic |

LVM | Lotka–Volterra model |

## References

- Shashoua, Y. Conservation of Plastics; Routledge: London, UK, 2012. [Google Scholar]
- Hale, R.C.; Seeley, M.E.; La Guardia, M.J.; Mai, L.; Zeng, E.Y. A Global Perspective on Microplastics. J. Geophys. Res. Ocean.
**2020**, 125, e2018JC014719. [Google Scholar] [CrossRef] - Jambeck, J.R.; Geyer, R.; Wilcox, C.; Siegler, T.R.; Perryman, M.; Andrady, A.; Narayan, R.; Law, K.L. Plastic waste inputs from land into the ocean. Science
**2015**, 347, 768–771. [Google Scholar] [CrossRef] [PubMed] - Boucher, J.; Friot, D. Primary Microplastics in the Oceans: A Global Evaluation of Sources; International Union for Conservation of Nature: Gland, Switzerland, 2017; Volume 10. [Google Scholar]
- Lau, W.W.Y.; Shiran, Y.; Bailey, R.M.; Cook, E.; Stuchtey, M.R.; Koskella, J.; Velis, C.A.; Godfrey, L.; Boucher, J.; Murphy, M.B.; et al. Evaluating scenarios toward zero plastic pollution. Science
**2020**, 369, 1455–1461. [Google Scholar] [CrossRef] [PubMed] - Singh, B.; Sharma, N. Mechanistic implications of plastic degradation. Polym. Degrad. Stab.
**2008**, 93, 561–584. [Google Scholar] [CrossRef] - Frias, J.; Nash, R. Microplastics: Finding a consensus on the definition. Mar. Pollut. Bull.
**2019**, 138, 145–147. [Google Scholar] [CrossRef] [PubMed] - Barcelo, D. Microplastics analysis. MethodsX
**2020**, 7, 100884. [Google Scholar] [CrossRef] [PubMed] - Galloway, T.; Lewis, C. Marine microplastics. Curr. Biol.
**2017**, 27, R445–R446. [Google Scholar] [CrossRef] [Green Version] - Tirelli, V.; Suaria, G.; Lusher, A. Microplastics in polar samples. In Handbook of Microplastics in the Environment; Springer: Cham, Switzerland, 2020; pp. 1–42. [Google Scholar]
- Johnson, A.C.; Ball, H.; Cross, R.; Horton, A.A.; Jurgens, M.D.; Read, D.S.; Vollertsen, J.; Svendsen, C. Identification and quantification of microplastics in potable water and their sources within water treatment works in England and Wales. Environ. Sci. Technol.
**2020**, 54, 12326–12334. [Google Scholar] [CrossRef] - Corradini, F.; Casado, F.; Leiva, V.; Huerta-Lwanga, E.; Geissen, V. Microplastics occurrence and frequency in soils under different land uses on a regional scale. Sci. Total Environ.
**2021**, 752, 141917. [Google Scholar] [CrossRef] - Harne, R.; Rokde, A.; Jadav, K.; Chitariya, J.M.; Sengar, A. Studies on plastic bezoar ingestion in free range axis deer in summer. J. Anim. Res.
**2019**, 9, 383–386. [Google Scholar] [CrossRef] - de Souza Machado, A.A.; Kloas, W.; Zarfl, C.; Hempel, S.; Rillig, M.C. Microplastics as an emerging threat to terrestrial ecosystems. Glob. Chang. Biol.
**2018**, 24, 1405–1416. [Google Scholar] [CrossRef] [Green Version] - Wang, K.; Zhu, L.; Rao, L.; Zhao, L.; Wang, Y.; Wu, X.; Zheng, H.; Liao, X. Nano- and micro-polystyrene plastics disturb gut microbiota and intestinal immune system in honeybee. Sci. Total Environ.
**2022**, 842, 156819. [Google Scholar] [CrossRef] [PubMed] - Cox, K.D.; Covernton, G.A.; Davies, H.L.; Dower, J.F.; Juanes, F.; Dudas, S.E. Human consumption of microplastics. Environ. Sci. Technol.
**2019**, 53, 7068–7074. [Google Scholar] [CrossRef] [PubMed] [Green Version] - Yu, Q.; Hu, X.; Yang, B.; Zhang, G.; Wang, J.; Ling, W. Distribution, abundance and risks of microplastics in the environment. Chemosphere
**2020**, 249, 126059. [Google Scholar] [CrossRef] [PubMed] - Farrell, P.; Nelson, K. Trophic level transfer of microplastic: Mytilus edulis (L.) to Carcinus maenas (L.). Environ. Pollut.
**2013**, 177, 1–3. [Google Scholar] [CrossRef] - Zhao, S.; Ward, J.E.; Danley, M.; Mincer, T.J. Field-based evidence for microplastic in marine aggregates and mussels: Implications for trophic transfer. Environ. Sci. Technol.
**2018**, 52, 11038–11048. [Google Scholar] [CrossRef] - Pirsaheb, M.; Hossini, H.; Makhdoumi, P. Review of microplastic occurrence and toxicological effects in marine environment: Experimental evidence of inflammation. Process. Saf. Environ. Prot.
**2020**, 142, 1–14. [Google Scholar] [CrossRef] - Schöpfer, L.; Menzel, R.; Schnepf, U.; Ruess, L.; Marhan, S.; Brümmer, F.; Pagel, H.; Kandeler, E. Microplastics effects on reproduction and body length of the soil-dwelling nematode Caenorhabditis elegans. Front. Environ. Sci.
**2020**, 8, 41. [Google Scholar] [CrossRef] - Xu, S.; Ma, J.; Ji, R.; Pan, K.; Miao, A.J. Microplastics in aquatic environments: Occurrence, accumulation, and biological effects. Sci. Total Environ.
**2020**, 703, 134699. [Google Scholar] [CrossRef] - Besseling, E.; Wang, B.; Lürling, M.; Koelmans, A.A. Nanoplastic affects growth of S. obliquus and reproduction of D. magna. Environ. Sci. Technol.
**2014**, 48, 12336–12343. [Google Scholar] [CrossRef] [PubMed] - Tallec, K.; Huvet, A.; Di Poi, C.; González-Fernández, C.; Lambert, C.; Petton, B.; Le Goïc, N.; Berchel, M.; Soudant, P.; Paul-Pont, I. Nanoplastics impaired oyster free living stages, gametes and embryos. Environ. Pollut.
**2018**, 242, 1226–1235. [Google Scholar] [CrossRef] [Green Version] - Van Colen, C.; Vanhove, B.; Diem, A.; Moens, T. Does microplastic ingestion by zooplankton affect predator–prey interactions? An experimental study on larviphagy. Environ. Pollut.
**2020**, 256, 113479. [Google Scholar] [CrossRef] [PubMed] - Huang, Q.; Lin, Y.; Zhong, Q.; Ma, F.; Zhang, Y. The impact of microplastic particles on population dynamics of predator and prey: Implication of the Lotka–Volterra model. Sci. Rep.
**2020**, 10, 4500. [Google Scholar] [CrossRef] [PubMed] - Lotka, A.J. Contribution to the Theory of Periodic Reactions. J. Phys. Chem.
**1910**, 14, 271–274. [Google Scholar] [CrossRef] [Green Version] - Berryman, A.A. The Orgins and Evolution of Predator–Prey Theory. Ecology
**1992**, 73, 1530–1535. [Google Scholar] [CrossRef] [Green Version] - Ribeiro, F.; Cabella, B.C.T.; Martinez, A.S. Richards-like two species population dynamics model. Theory Biosci.
**2014**, 133, 135–143. [Google Scholar] [CrossRef] - Cabella, B.; Meloni, F.; Martinez, A.S. Inadequate Sampling Rates Can Undermine the Reliability of Ecological Interaction Estimation. Math. Comput. Appl.
**2019**, 24, 48. [Google Scholar] [CrossRef] [Green Version] - Hallam, T.; de Luna, J. Effects of toxicants on populations: A qualitative: Approach III. Environmental and food chain pathways. J. Theor. Biol.
**1984**, 109, 411–429. [Google Scholar] [CrossRef] - Cabella, B.C.T.; Ribeiro, F.; Martinez, A.S. Effective carrying capacity and analytical solution of a particular case of the Richards-like two-species population dynamics model. Phys. A Stat. Mech. Appl.
**2012**, 391, 1281–1286. [Google Scholar] [CrossRef] - Dos Santos, L.S.; Cabella, B.C.T.; Martinez, A.S. Generalized Allee effect model. Theory Biosci.
**2014**, 113, 117–124. [Google Scholar] [CrossRef] - Dos Santos, R.V.; Ribeiro, F.L.; Martinez, A.S. Models for Allee effect based on physical principles. J. Theor. Biol.
**2015**, 385, 143–152. [Google Scholar] [CrossRef] [PubMed]

**Figure 1.**Short-term population dynamics of the predator–prey for $\alpha ={\alpha}^{\prime}=0$. Predator and prey have the same response strength to MP particles, i.e., $\Delta ={r}_{11}/{r}_{21}=1.0$. Abscissa measures time in months, and ordinate measures the number of organisms (No./m

^{3}). The populations of prey (${x}_{1}$) and predator (${x}_{2}$) are represented by the blue dotted line and the orange continuous one, respectively.

**Figure 2.**Short-term population dynamics of the predator–prey for $\alpha =0$. Predator and prey have the same response strength to MP particles, ${r}_{11}={r}_{21}=0.1$, i.e., $\Delta ={r}_{11}/{r}_{21}=1.0$. Abscissa measures time in months and ordinate measures the number of organisms (No./m

^{3}). The populations of prey (${x}_{1}$) and predator (${x}_{2}$) are represented by the blue dotted line and the orange continuous one, respectively.

**Figure 3.**Short-term population dynamics of the predator–prey for ${\alpha}^{\prime}=0$. Predator and prey have the same response strength to MP particles, i.e., $\Delta ={r}_{11}/{r}_{21}=1.0$. Abscissa measures time in months and ordinate measures the number of organisms (No./m

^{3}). The populations of prey (${x}_{1}$) and predator (${x}_{2}$) are represented by the blue dotted line and the orange continuous one, respectively.

Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |

© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).

## Share and Cite

**MDPI and ACS Style**

Dos Santos, L.S.; Alcarás, J.R.; Da Costa, L.M.; Simões, M.M.R.; Martinez, A.S.
Analytical Solutions of Microplastic Particles Dispersion Using a Lotka–Volterra Predator–Prey Model with Time-Varying Intraspecies Coefficients. *Math. Comput. Appl.* **2022**, *27*, 66.
https://doi.org/10.3390/mca27040066

**AMA Style**

Dos Santos LS, Alcarás JR, Da Costa LM, Simões MMR, Martinez AS.
Analytical Solutions of Microplastic Particles Dispersion Using a Lotka–Volterra Predator–Prey Model with Time-Varying Intraspecies Coefficients. *Mathematical and Computational Applications*. 2022; 27(4):66.
https://doi.org/10.3390/mca27040066

**Chicago/Turabian Style**

Dos Santos, Lindomar Soares, José Renato Alcarás, Lucas Murilo Da Costa, Mateus Mendonça Ramos Simões, and Alexandre Souto Martinez.
2022. "Analytical Solutions of Microplastic Particles Dispersion Using a Lotka–Volterra Predator–Prey Model with Time-Varying Intraspecies Coefficients" *Mathematical and Computational Applications* 27, no. 4: 66.
https://doi.org/10.3390/mca27040066