New Unidimensional Indexes for China
Abstract
:1. Introduction
2. Constructs and Indicators
2.1. Chomskyan Globalization
- Actual flows (% of GDP) include trade, foreign direct investment, portfolio investment, and income payments to foreign nationals.
- Low restrictions denote lower hidden import barriers, mean tariff rate, taxes on international trade, and capital account restrictions.
- Personal contact includes telephone traffic, transfers, foreign population, and international letters.
- Information flows refer to internet users, television, and trade in newspapers.
- Cultural proximity is made up of trade in books and numbers of McDonald’s and Ikea.
- Political globalization consists of embassies in country, membership in international organizations, participation in U.N. Security Council missions, and international treaties.
2.2. Domestic Credit
- Domestic credit to the private sector (% of GDP) refers to financial resources provided to the private sector by financial corporations. The financial corporations include monetary authorities and deposit money banks.
- Domestic credit provided by the financial sector (% of GDP) includes all credit to various sectors. The financial sector includes monetary authorities and deposit money banks.
- Chinese domestic credit provides a huge potential for kinetic household demand and the business investment that supplies it.
2.3. Per Capita GDP
- GDP per capita is the gross domestic product divided by the midyear population. Data are in constant 2010 U.S. dollars.
3. Unidimensional Index Theory
3.1. Indicator Weighting
3.2. Latent Principal Components
3.3. Manifest Principal Components
3.4. Latent Regression
3.5. Sufficiency (but not Necessity) of ɷ-Homogeneity
4. Computation of Population-Weighted Indexes
4.1. Globalization Index
4.2. Domestic Credit Index
predict domesticcredit, norotated
5. Computation of Population-Weighted Regression Slopes
5.1. The Setup for Regression
5.2. Bivariate Regression of Principal Components
5.3. Multivariate Regression of per Capita GDP on Principal Components
6. Future Directions
6.1. Advantages of Latent Principal Components and Regression over Sample Surveys
6.2. Conclusions
Acknowledgments
Conflicts of Interest
References
- Varoufakis, Y. The Global Minotaur: America, the True Origins of the Financial Crisis and the Future of the World Economy; Zed Books: London, UK, 2011. [Google Scholar]
- Varoufakis, Y. And the Weak Suffer What They Must? Europe’s Crisis and America’s Economic Future; Nation Books: New York, NY, USA, 2016. [Google Scholar]
- Chomsky, N. Hopes and Prospects; Haymarket Books: Chicago, IL, USA, 2010. [Google Scholar]
- Samimi, P.; Lim, G.C.; Buang, A. A critical review of synthetic globalization indexes. Int. J. Fundam. Psychol. Soc. Sci. 2012, 2, 28–31. [Google Scholar]
- Bechtel, G.G. Does globalization mitigate income inequality? J. Data Sci. 2014, 12, 197–215. [Google Scholar]
- Dreher, A. Does globalization affect growth? Evidence from a new index of globalization. Appl. Econ. 2006, 38, 1091–1110. [Google Scholar] [CrossRef]
- Singh, A.; Nabar, M.; N’Diaye, P. (Eds.) China’s Economy in Transition: From External to Internal Rebalancing; International Monetary Fund: Washington, DC, USA, 2013.
- O’Neill, D.W.; Dietz, R.; Jones, N. (Eds.) Enough is Enough: Ideas for a Sustainable Economy in a World of Finite Resources; The Report of the Steady State Economy Conference; Center for the Advancement of the Steady State Economy and Economic Justice for All: Leeds, UK, 2010.
- Costanza, R.; Alperovitz, G.; Daley, H.; Farley, J.; Franco, C.; Jackson, T.; Kubiszewski, I.; Schor, J.; Victor, P. Building a Sustainable and Desirable Economy-in-Society-in-Nature; United Nations Division for Sustainable Development: New York, NY, USA, 2012. [Google Scholar]
- Progressive Economy. A Call for Change: From Crisis to a New Egalitarian Ideal for Europe; The Progressive Economy Initiative: Brussels, Belgium, 2014. [Google Scholar]
- Johnston, J. Econometric Methods, 3rd ed.; McGraw-Hill: New York, NY, USA, 1984. [Google Scholar]
- Bechtel, G.G. National index theory: Chomskyan globalization and well-being. Comput. Appl. Math. J. 2016, 2, 6–11. [Google Scholar]
- StataCorp. Stata Statistical Software; Release 12; StataCorp LP: College Station, TX, USA, 2011. [Google Scholar]
- Van Dyk, D.; Fuentes, M.; Jordan, M.; Newton, M.; Ray, B.; Lang, D.; Wickham, H. ASA Statement on the Role of Statistics in Data Science. Amstat News, October 2015; 9. [Google Scholar]
- Davidian, M. Aren’t We Data Science? Amstat News, July 2013; 3–5. [Google Scholar]
- Vogelius, M.; Kannan, N.; Huo, X. NSF Big Data Funding Opportunity for the Statistics Community. Amstat News, April 2015; 6. [Google Scholar]
- Pfeffermann, D. Methodological issues and challenges in the production of official statistics, 24th Annual Morris Hansen Lecture. J. Surv. Stat. Methodol. 2015, 3, 425–467. [Google Scholar] [CrossRef]
- Horrigan, M.W. Big Data: A Perspective from the BLS. Amstat News, January 2013; 25–27. [Google Scholar]
- Shapiro, H. The Index of Consumer Sentiment and economic forecasting: A reappraisal. In Human Behavior in Economic Affairs; Strumpel, B., Morgan, J.N., Zahn, E., Eds.; Jossey-Bass: San Francisco, CA, USA, 1972; Chapter 18. [Google Scholar]
- Didow, N.M.; Perreault, W.D.; Williamson, N.C. A cross-sectional optimal scaling analysis of the index of consumer sentiment. J. Consum. Res. 1983, 10, 339–347. [Google Scholar] [CrossRef]
- Vanden Abeele, P.V. The index of consumer sentiment: Predictability and predictive power in the EEC. J. Econ. Psychol. 1983, 3, 1–17. [Google Scholar] [CrossRef]
- Bram, J.; Ludvigson, S. Does Consumer Confidence Forecast House-Hold Expenditure? A Sentiment Index Horse Race; Federal Reserve Bank of New York: New York, NY, USA, 1998; pp. 59–78. [Google Scholar]
- Lyberg, L.; Biemer, P.; Collins, M.; de Leeuw, E.; Dippo, C.; Schwarz, N.; Trewin, D. (Eds.) Survey Measurement and Process Quality; Wiley and Sons: New York, NY, USA, 1997.
- Bradburn, N.M. Surveys as social interactions. J. Surv. Stat. Methodol. 2016, 4, 94–109. [Google Scholar] [CrossRef]
- Chaudhuri, A.; Stenger, H. Survey Sampling: Theory and Methods, 2nd ed.; CRC Press: Boca Raton, FL, USA, 2005. [Google Scholar]
- Brewer, K.; Gregoire, T.G. Introduction to survey sampling. In Handbook of Statistics (Sample Surveys: Design, Methods and Applications); Pfeffermann, D., Rao, C.R., Eds.; Elsevier: Amsterdam, The Netherlands, 2009; Volume 29A, Chapter 1. [Google Scholar]
- Opsomer, J.D. Introduction to Part 4: Alternative approaches to inference from survey data. In Handbook of Statistics (Sample Surveys: Inference and Analysis); Pfeffermann, D., Rao, C.R., Eds.; Elsevier: Amsterdam, The Netherlands, 2009; Volume 29B, pp. 3–9. [Google Scholar]
- Bound, J.; Brown, C.; Mathiowetz, N. Measurement error in survey data. In Handbook of Econometrics; Heckman, J., Leamer, E., Eds.; Elsevier Science: Amsterdam, The Netherlands, 2001; Volume 5, Chapter 59. [Google Scholar]
- Thompson, M.E. Theory of Sample Surveys; Chapman and Hall: London, UK, 1997. [Google Scholar]
- Lohr, S.L. Sampling: Design and Analysis, 2nd ed.; Brooks/Cole: Boston, MA, USA, 2010. [Google Scholar]
- Brick, J.; Montaquila, J.M. Nonresponse and weighting. In Handbook of Statistics (Sample Surveys: Design, Methods and Applications); Pfeffermann, D., Rao, C.R., Eds.; Elsevier: Amsterdam, The Netherlands, 2009; Volume 29A, Chapter 8. [Google Scholar]
- Little, R.J.A.; Rubin, D.B. Statistical Analysis with Missing Data; Wiley and Sons: New York, NY, USA, 2002. [Google Scholar]
- Demnati, A.; Rao, J.N.K. Linearization variance estimators for survey data. Surv. Methodol. 2004, 30, 17–26. [Google Scholar]
- Prášková, Z.; Sen, P.K. Asymptotics in finite population sampling. In Handbook of Statistics (Sample Surveys: Inference and Analysis); Pfeffermann, D., Rao, C.R., Eds.; Elsevier: Amsterdam, The Netherlands, 2009; Volume 29B, Chapter 40. [Google Scholar]
- Frankovic, K.A.; Panagopoulos, C.; Shapiro, R.Y. Opinion and election polls. In Handbook of Statistics (Sample Surveys: Design, Methods and Applications); Pfeffermann, D., Rao, C.R., Eds.; Elsevier: Amsterdam, The Netherlands, 2009; Volume 29A, Chapter 22. [Google Scholar]
- Spagat, M. Suspicious Supervisors and Suspect Surveys. Available online: http://www.stats.org (accessed on 15 June 2016).
- Jarmin, R.; Lane, J.; Marco, A.; Foster, I. Using the Classroom to Bring Big Data to Statistical Agencies. Amstat News, November 2014; 12–13. [Google Scholar]
- Li, L. Statistics Training: A Big Role in Big Data? Amstat News, May 2014; 32–33. [Google Scholar]
- Van der Laan, M. Statistics as a Science, Not an Art: The Way to Survive in Data Science. Amstat News, February 2015; 29–30. [Google Scholar]
- Priestley, J.L. Data Science: The Evolution or Extinction of Statistics? Amstat News, January 2016; 26–27. [Google Scholar]
- Varoufakis, Y. Europe after the Minotaur: Greece and the Future of the World Economy; Zed Books: London, UK, 2015. [Google Scholar]
Principal Components | 1 | 2 | 3 | 4 | 5 | 6 |
---|---|---|---|---|---|---|
Eigenvalues | 4.897 | 0.445 | 0.393 | 0.194 | 0.061 | 0.010 |
Indicators | Flows | Lowrestrict | Contact | Infoflows | Culturprox | Politglobal |
---|---|---|---|---|---|---|
Loadings | 0.841 | 0.790 | 0.946 | 0.968 | 0.896 | 0.964 |
Scoring coefficients | 0.172 | 0.161 | 0.193 | 0.198 | 0.183 | 0.197 |
Principal Components | 1 | 2 |
---|---|---|
Eigenvalues | 1.974 | 0.026 |
Indicators | Private Sector Credit | Financial Sector Credit |
---|---|---|
Loadings | 0.993 | 0.993 |
Scoring coefficients | 0.503 | 0.503 |
Chomskyan Globalization | Domestic Credit | R2 |
---|---|---|
0.407 | 0.466 | 0.689 |
© 2017 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license ( http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bechtel , G. New Unidimensional Indexes for China. Math. Comput. Appl. 2017, 22, 13. https://doi.org/10.3390/mca22010013
Bechtel G. New Unidimensional Indexes for China. Mathematical and Computational Applications. 2017; 22(1):13. https://doi.org/10.3390/mca22010013
Chicago/Turabian StyleBechtel , Gordon. 2017. "New Unidimensional Indexes for China" Mathematical and Computational Applications 22, no. 1: 13. https://doi.org/10.3390/mca22010013
APA StyleBechtel , G. (2017). New Unidimensional Indexes for China. Mathematical and Computational Applications, 22(1), 13. https://doi.org/10.3390/mca22010013