Phenolic Composition, Antioxidant and Antibacterial Activities of Extract from Flowers of Rosa damascena from Morocco
Abstract
:1. Introduction
2. Materials and Methods
2.1. Plant Material
2.2. Reagents
2.3. Standards Employed
2.4. Phytochemical Screening
2.5. Phenolic Extraction
2.5.1. Determination of the Total Phenols Content in Rosa damascena
2.5.2. Determination of the Flavonoids Contents in Rosa damascena
2.6. HPLC-PDA-ESI/MS Analyses
2.6.1. Sample Preparation
2.6.2. HPLC-MS Conditions
2.7. Antioxidant Activity
2.7.1. Ferric Reducing Assay Power (FRAP)
2.7.2. Total Antioxidant Capacity (TAC)
2.8. Antibacterial Activity
2.8.1. Bacterial Strains
2.8.2. Broth Micro-Dilution Method
2.9. Statistical Analysis
3. Results and Discussion
3.1. Phytochemical Screening
3.2. Extraction Yield
3.3. Determination of the Total Phenols and Flavonoids Contents
3.4. HPLC-PDA/ESI-MS Analyses
3.5. Antioxidant Activity
3.5.1. Antioxidant Activity of the Rosa damascena Hydroethanolic Extract by FRAP
3.5.2. Total Antioxidant Capacity (TAC)
3.6. Antibacterial Activity
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Mahboubi, M. Rosa Damascena as Holy Ancient Herb with Novel Applications. J. Tradit. Complement. Med. 2016, 6, 10–16. [Google Scholar] [CrossRef] [PubMed]
- Himesh, S.; Nanda, S.; Ak, S.; Jitender, M. Radical Scavenging Activities and Natural Indicator Activity of Aqueous and Ethanolic Extract of Rosa Damascena. Int. J. Pharm. Pharm. Sci. 2012, 4, 581–586. [Google Scholar]
- Gudin, S. Rose: Genetics and Breeding; Plant Brred Rev; John Wiley & Sons: New York, NY, USA, 2000; Volume 17, ISBN 978-0-470-65012-7. [Google Scholar]
- Babaei, A.; Tabaei-Aghdaei, S.R.; Khosh-Khui, M.; Omidbaigi, R.; Naghavi, M.R.; Esselink, G.D.; Smulders, M.J. Microsatellite Analysis of Damask Rose (Rosa damascena Mill.) Accessions from Various Regions in Iran Reveals Multiple Genotypes. BMC Plant Biol. 2007, 7, 12. [Google Scholar] [CrossRef] [PubMed]
- Kaul, K.; Karthigeyan, S.; Dhyani, D.; Kaur, N.; Sharma, R.K.; Ahuja, P.S. Morphological and Molecular Analyses of Rosa damascena × R. Bourboniana Interspecific Hybrids. Sci. Hortic. 2009, 122, 258–263. [Google Scholar] [CrossRef]
- Naquvi, K.J.; Ansari, S.H.; Ali, M.; Najmi, A.K. Volatile Oil Composition of Rosa damascena Mill. (Rosaceae). J. Pharmacogn. Phytochem. 2014, 2, 130–134. [Google Scholar]
- Baydar, H. Oil-Bearing Rose (Rosa damascena Mill.) Cultivation and Rose Oil Industry in Turkey. Euro Cosmet. 2006, 14, 13–17. [Google Scholar]
- Widrlechner, M.P. History and Utilization of Rosa damascena. Econ. Bot. 1981, 35, 42–58. [Google Scholar] [CrossRef]
- Akram, M.; Riaz, M.; Munir, N.; Akhter, N.; Zafar, S.; Jabeen, F.; Shariati, M.A.; Akhtar, N.; Riaz, Z.; Altaf, S.H.; et al. Chemical Constituents, Experimental and Clinical Pharmacology of Rosa damascena: A Literature Review. J. Pharm. Pharmacol. 2020, 72, 161–174. [Google Scholar] [CrossRef]
- Boskabady, M.H.; Shafei, M.N.; Saberi, Z.; Amini, S. Pharmacological Effects of Rosa damascena. Iran. J. Basic Med. Sci. 2011, 14, 295–307. [Google Scholar]
- Preedy, V.R. Essential Oils in Food Preservation, Flavor and Safety; Elsevier Science Inc.: Amsterdam, The Netherlands, 2015. [Google Scholar]
- Cheng, B.C.Y.; Fu, X.-Q.; Guo, H.; Li, T.; Wu, Z.-Z.; Chan, K.; Yu, Z.-L. The Genus Rosa and Arthritis: Overview on Pharmacological Perspectives. Pharmacol. Res. 2016, 114, 219–234. [Google Scholar] [CrossRef]
- Ramdan, B.; Ben Mrid, R.; Ramdan, R.; El Karbane, M.; Nhiri, M. Promising Effects of Rosa damascena Petal Extracts as Antioxidant and Antibacterial Agents. Pak. J. Pharm. Sci. 2021, 34, 1–8. [Google Scholar] [PubMed]
- Özkan, G.; Sagdiç, O.; Baydar, N.G.; Baydar, H. Note: Antioxidant and Antibacterial Activities of Rosa damascena Flower Extracts. Food Sci. Technol. Int. 2004, 10, 277–281. [Google Scholar] [CrossRef]
- Nayebi, N.; Khalili, N.; Kamalinejad, M.; Emtiazy, M. A Systematic Review of the Efficacy and Safety of Rosa damascena Mill. with an Overview on Its Phytopharmacological Properties. Complement. Ther. Med. 2017, 34, 129–140. [Google Scholar] [CrossRef]
- Staĭkov, V.; Kalaĭdzhiev, I. Kalaidjiev Study of essential oil roses (Rosa damascena Mill.) from India, Morroco, Iran and Bulgaria. Rast. Dni Nauk. 1980, 17, 58–69. [Google Scholar]
- Aithida, A.; Tahiri, A.; Oubassine, Y.; Cherifi, K.; Mokhtari, M.; Hassani, L.A.I. The Agromorphological Characterization of the Perfume Rose (Rosa damascena Mill.) Of Kelâa M’gouna-Dades (Morocco). Atlas J. Plant Biol. 2019, 86–95. [Google Scholar] [CrossRef] [Green Version]
- Amal, A.; Abdelghani, T.; Latifa, A.; Amina, I.H.L.; Mimoun, M. Effects of Cutting Origin and Exogenous Auxin Treatment on the Rooting of Rosa damascena (Mill) Cuttings from the M’goun-Dades Valleys in Morocco. Arab. J. Med. Aromat. Plants 2022, 8, 134–154. [Google Scholar] [CrossRef]
- Bruneton, J. Pharmacognosie: Phytochimie, Plantes Médicinales, 4th ed.; Tec & Doc Lavoisier: Cachan, France, 2009; ISBN 978-2-7430-1188-8. [Google Scholar]
- N’Guessan, K.; Kadja, B.; Zirihi, G.; Traoré, D.; Aké-Assi, L. Screening phytochimique de quelques plantes médicinales ivoiriennes utilisées en pays Krobou (Agboville, Côte-d’Ivoire). Sci. Nat. 2009, 6, 1–15. [Google Scholar] [CrossRef]
- Singleton, V.L.; Orthofer, R.; Lamuela-Raventós, R.M. Analysis of Total Phenols and Other Oxidation Substrates and Antioxidants by Means of Folin-Ciocalteu Reagent. In Methods in Enzymology; Oxidants and Antioxidants Part A; Academic Press: Cambridge, MA, USA, 1999; Volume 299, pp. 152–178. [Google Scholar]
- Kosalec, I.; Bakmaz, M.; Pepeljnjak, S.; Vladimir-Knezević, S. Quantitative Analysis of the Flavonoids in Raw Propolis from Northern Croatia. Acta Pharm. 2004, 54, 65–72. [Google Scholar]
- Zovko Končić, M.; Kremer, D.; Karlović, K.; Kosalec, I. Evaluation of Antioxidant Activities and Phenolic Content of Berberis vulgaris, L. and Berberis croatica Horvat. Food Chem. Toxicol. 2010, 48, 2176–2180. [Google Scholar] [CrossRef] [PubMed]
- Prieto, P.; Pineda, M.; Aguilar, M. Spectrophotometric Quantitation of Antioxidant Capacity through the Formation of a Phosphomolybdenum Complex: Specific Application to the Determination of Vitamin E. Anal. Biochem. 1999, 269, 337–341. [Google Scholar] [CrossRef]
- Bouymajane, A.; Rhazi Filali, F.; Oulad El Majdoub, Y.; Ouadik, M.; Abdelilah, R.; Cavò, E.; Miceli, N.; Taviano, M.F.; Mondello, L.; Cacciola, F. Phenolic Compounds, Antioxidant and Antibacterial Activities of Extracts from Aerial Parts of Thymus zygis Subsp. Gracilis, Mentha suaveolens and Sideritis incana from Morocco. Chem. Biodivers. 2022, 19, e202101018. [Google Scholar] [CrossRef]
- Kumar, N.; Singh, B.; Kaul, V.K. Flavonoids from Rosa damascena Mill. Nat. Prod. Commun. 2006, 1, 623–626. [Google Scholar] [CrossRef]
- Alam, M.; Nyeem, M.; Awal, M.; Mostofa, M.; Alam, M.; Subhan, N.; Rahman, M.M. Antioxidant and Hepatoprotective Action of the Crude Ethanolic Extract of the Flowering Top of Rosa damascena. Orient. Pharm. Exp. Med. 2008, 8, 164–170. [Google Scholar] [CrossRef]
- Fetni, S.; Bertella, N.; Ouahab, A.; Martinez Zapater, J.M.; De Pascual-Teresa Fernandez, S. Composition and Biological Activity of the Algerian Plant Rosa canina L. by HPLC-UV-MS. Arab. J. Chem. 2020, 13, 1105–1119. [Google Scholar] [CrossRef]
- Oreopoulou, A.; Tsimogiannis, D.; Oreopoulou, V. Extraction of Polyphenols From Aromatic and Medicinal Plants: An Overview of the Methods and the Effect of Extraction Parameters. In Polyphenols in Plants; Elsevier: Amsterdam, The Netherlands, 2019; pp. 243–259. ISBN 978-0-12-813768-0. [Google Scholar]
- Dai, J.; Mumper, R.J. Plant Phenolics: Extraction, Analysis and Their Antioxidant and Anticancer Properties. Molecules 2010, 15, 7313–7352. [Google Scholar] [CrossRef] [PubMed]
- Do, Q.D.; Angkawijaya, A.E.; Tran-Nguyen, P.L.; Huynh, L.H.; Soetaredjo, F.E.; Ismadji, S.; Ju, Y.-H. Effect of Extraction Solvent on Total Phenol Content, Total Flavonoid Content, and Antioxidant Activity of Limnophila aromatica. J. Food Drug Anal. 2014, 22, 296–302. [Google Scholar] [CrossRef] [Green Version]
- Turkmen, N.; Sari, F.; Velioglu, Y.S. Effects of Extraction Solvents on Concentration and Antioxidant Activity of Black and Black Mate Tea Polyphenols Determined by Ferrous Tartrate and Folin–Ciocalteu Methods. Food Chem. 2006, 99, 835–841. [Google Scholar] [CrossRef]
- Dudonné, S.; Vitrac, X.; Coutière, P.; Woillez, M.; Mérillon, J.-M. Comparative Study of Antioxidant Properties and Total Phenolic Content of 30 Plant Extracts of Industrial Interest Using DPPH, ABTS, FRAP, SOD, and ORAC Assays. J. Agric. Food Chem. 2009, 57, 1768–1774. [Google Scholar] [CrossRef]
- Koczka, N.; Stefanovits-Bányai, É.; Ombódi, A. Total Polyphenol Content and Antioxidant Capacity of Rosehips of Some Rosa Species. Medicines 2018, 5, 84. [Google Scholar] [CrossRef]
- Mohsen, E.; Younis, I.Y.; Farag, M.A. Metabolites Profiling of Egyptian Rosa damascena Mill. Flowers as Analyzed via Ultra-High-Performance Liquid Chromatography-Mass Spectrometry and Solid-Phase Microextraction Gas Chromatography-Mass Spectrometry in Relation to Its Anti-Collagenase Skin Effect. Ind. Crop. Prod. 2020, 155, 112818. [Google Scholar] [CrossRef]
- Zou, D.; Wang, J.; Zhang, B.; Xie, S.; Wang, Q.; Xu, K.; Lin, R. Analysis of Chemical Constituents in Wuzi-Yanzong-Wan by UPLC-ESI-LTQ-Orbitrap-MS. Molecules 2015, 20, 21373–21404. [Google Scholar] [CrossRef] [PubMed]
- Cendrowski, A.; Ścibisz, I.; Kieliszek, M.; Kolniak-Ostek, J.; Mitek, M. UPLC-PDA-Q/TOF-MS Profile of Polyphenolic Compounds of Liqueurs from Rose Petals (Rosa rugosa). Molecules 2017, 22, 1832. [Google Scholar] [CrossRef] [PubMed]
- Ghimeray, A.K.; Jung, U.S.; Lee, H.Y.; Kim, Y.H.; Ryu, E.K.; Chang, M.S. In Vitro Antioxidant, Collagenase Inhibition, and in Vivo Anti-Wrinkle Effects of Combined Formulation Containing Punica granatum, Ginkgo biloba, Ficus carica, and Morus alba Fruits Extract. Clin. Cosmet. Investig. Derm. 2015, 8, 389–396. [Google Scholar] [CrossRef] [PubMed]
- Henning, S.M.; Yang, J.; Lee, R.-P.; Huang, J.; Hsu, M.; Thames, G.; Gilbuena, I.; Long, J.; Xu, Y.; Park, E.H.; et al. Pomegranate Juice and Extract Consumption Increases the Resistance to UVB-Induced Erythema and Changes the Skin Microbiome in Healthy Women: A Randomized Controlled Trial. Sci. Rep. 2019, 9, 14528. [Google Scholar] [CrossRef]
- Huang, D.; Li, C.; Chen, Q.; Xie, X.; Fu, X.; Chen, C.; Huang, Q.; Huang, Z.; Dong, H. Identification of Polyphenols from Rosa roxburghii Tratt Pomace and Evaluation of in Vitro and in Vivo Antioxidant Activity. Food Chem. 2022, 377, 131922. [Google Scholar] [CrossRef]
- Wang, R.; He, R.; Li, Z.; Lin, X.; Wang, L. HPLC-Q-Orbitrap-MS/MS Phenolic Profiles and Biological Activities of Extracts from Roxburgh Rose (Rosa roxburghii Tratt.) Leaves. Arab. J. Chem. 2021, 14, 103257. [Google Scholar] [CrossRef]
- Abdel-Hameed, E.-S.S.; Bazaid, S.A.; Salman, M.S. Characterization of the Phytochemical Constituents of Taif Rose and Its Antioxidant and Anticancer Activities. BioMed Res. Int. 2013, 2013, 345465. [Google Scholar] [CrossRef]
- Elfitriani, E.; Raif, A.; Ginting, C.N.; Ikhtiari, R. Evaluation of Antioxidant and Anti-Collagenase Activity of Rosa damascena L. Flower Petal and Receptacle Extract. F1000Research 2020, 9, 716. [Google Scholar] [CrossRef]
- Sepahpour, S.; Selamat, J.; Abdul Manap, M.Y.; Khatib, A.; Abdull Razis, A.F. Comparative Analysis of Chemical Composition, Antioxidant Activity and Quantitative Characterization of Some Phenolic Compounds in Selected Herbs and Spices in Different Solvent Extraction Systems. Molecules 2018, 23, 402. [Google Scholar] [CrossRef] [PubMed]
- Imran, M.; Salehi, B.; Sharifi-Rad, J.; Aslam Gondal, T.; Saeed, F.; Imran, A.; Shahbaz, M.; Tsouh Fokou, P.V.; Umair Arshad, M.; Khan, H.; et al. Kaempferol: A Key Emphasis to Its Anticancer Potential. Molecules 2019, 24, 2277. [Google Scholar] [CrossRef]
- Hirulkar, N.B.; Agrawal, M. Antimicrobial Activity of Rose Petals Extract against Some Pathogenic Bacteria. Int. J. Pharm. Biol. Arch 2010, 1, 478–484. [Google Scholar]
- Leyva-Jimenez, F.J.; Lozano-Sanchez, J.; Borras-Linares, I.; de la Luz Cadiz-Gurrea, M.; Mahmoodi-Khaledi, E. Potential Antimicrobial Activity of Honey Phenolic Compounds against Gram Positive and Gram Negative Bacteria. LWT 2019, 101, 236–245. [Google Scholar] [CrossRef]
- Tafrihi, M.; Imran, M.; Tufail, T.; Gondal, T.A.; Caruso, G.; Sharma, S.; Sharma, R.; Atanassova, M.; Atanassov, L.; Valere Tsouh Fokou, P.; et al. The Wonderful Activities of the Genus Mentha: Not Only Antioxidant Properties. Molecules 2021, 26, 1118. [Google Scholar] [CrossRef] [PubMed]
- Talib, W.H.; Mahasneh, A.M. Antimicrobial, Cytotoxicity and Phytochemical Screening of Jordanian Plants Used in Traditional Medicine. Molecules 2010, 15, 1811–1824. [Google Scholar] [CrossRef] [Green Version]
Extraction Yield | Total Phenols Content | Total Flavonoids Content | FRAP | TAC |
---|---|---|---|---|
40.5% | 20.07 ± 1.00 mg GAE/g dm | 0.987 ± 0.05 mg QE/g dm | 0.20 ± 0.1 mg/mL | 213.223 mg EAA/1 g E |
Peak N° | Compound | tR (min) | UV (nm) | [M − H]− | [M + H]+ | Fragments | Quantity (mg/Kg) Extract ± sd | References |
---|---|---|---|---|---|---|---|---|
1 | Valoneic acid dilactone | 16.28 | 255, 364 | 469 | 471 | - | Nq | [40] |
2 | Ellagic Acid | 21.13 | 252, 366 | 301 | 303 | - | Nq | [28,40,41] |
3 | Quercetin-3-O-hexoside | 21.81 | 255, 354 | 463 | 465 | - | 7005.05 ± 52.32 | [40,41] |
4 | Quercetin-3-O-hexoside | 22.45 | 255, 353 | 463 | 465 | - | 5837.40 ± 79.04 | [40,41] |
5 | Kaempferol-O-hexoside | 24.81 | 264, 344 | 447 | 449 | 287(+) | 3332.90 ± 37.57 | [28,40,41] |
6 | Kaempferol-3-Glucoside-2″-p-coumaroyl | 25.17 | 264, 344 | 593 | 595 | 287(+) | 2519.60 ± 3.34 | [28] |
7 | Rutin | 25.60 | 257, 348 | 609 | - | 303(+) | 1778.22 ± 12.79 | [28] |
8 | Quercetin-3-pentoside | 25.84 | 258, 352 | 433, 151 | - | 303(+) | 1341.14 ± 18.07 | [41] |
9 | Kaempferol-O-hexoside | 26.46 | 264, 344 | 447 | 449 | 287(+) | 13,575.88 ± 69.39 | [28,40,41] |
10 | Kaempferol-O-pentoside | 28.79 | 264, 344 | 417 | 419 | 287(+) | 1201.45 ± 9.34 | [35] |
11 | Kaempferol-3-Glucoside-2″-p-coumaroyl isomer | 30.58 | 263, 342 | 593 | 595 | 287(+) | 2933.56 ± 1.08 | [28] |
12 | Kaempferol-O-pentoside | 30.85 | 264, 346 | 417 | 419 | 287(+) | 1955.01 ± 31.46 | [35] |
13 | Kaempferol-3-O-rhamnoside | 32.18 | 263, 344 | 431 | 433 | 287(+) | 2892.49 ± 75.16 | [42] |
14 | Kaempferol acetyldisaccharides | 37.57 | 263, 343 | 635 | 637 | 287(+) | 758.59 ± 16.88 | [42] |
15 | Quercetin | 37.84 | 254, 369 | 301 | 303 | - | 271.96 ± 6.84 | [28,40,41] |
16 | Unknown | 39.13 | 266, 313 | 593 | 595 | - | Nq | [42] |
17 | Unknown | 42.09 | 295 | 582 | 584 | - | Nq | - |
18 | Kaempferol | 43.33 | 263, 365 | 285 | 287 | - | Nq | [41] |
Bacteria | MIC | MBC | MBC/MIC |
---|---|---|---|
Escherichia coli | 20.83 ± 0.12 | 166.66 ± 0.12 | 8 |
Salmonella typhimirium | 41.66 ± 0.15 | 166.66 ± 0.17 | 4 |
Staphyloccocus aureus | 20.83 ± 0.20 | 83.33 ± 0.12 | 4 |
Listeria monocytogenes | 20.83 ± 0.17 | 41.66 ± 0.19 | 2 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chroho, M.; Bouymajane, A.; Oulad El Majdoub, Y.; Cacciola, F.; Mondello, L.; Aazza, M.; Zair, T.; Bouissane, L. Phenolic Composition, Antioxidant and Antibacterial Activities of Extract from Flowers of Rosa damascena from Morocco. Separations 2022, 9, 247. https://doi.org/10.3390/separations9090247
Chroho M, Bouymajane A, Oulad El Majdoub Y, Cacciola F, Mondello L, Aazza M, Zair T, Bouissane L. Phenolic Composition, Antioxidant and Antibacterial Activities of Extract from Flowers of Rosa damascena from Morocco. Separations. 2022; 9(9):247. https://doi.org/10.3390/separations9090247
Chicago/Turabian StyleChroho, Mounia, Aziz Bouymajane, Yassine Oulad El Majdoub, Francesco Cacciola, Luigi Mondello, Mustapha Aazza, Touriya Zair, and Latifa Bouissane. 2022. "Phenolic Composition, Antioxidant and Antibacterial Activities of Extract from Flowers of Rosa damascena from Morocco" Separations 9, no. 9: 247. https://doi.org/10.3390/separations9090247
APA StyleChroho, M., Bouymajane, A., Oulad El Majdoub, Y., Cacciola, F., Mondello, L., Aazza, M., Zair, T., & Bouissane, L. (2022). Phenolic Composition, Antioxidant and Antibacterial Activities of Extract from Flowers of Rosa damascena from Morocco. Separations, 9(9), 247. https://doi.org/10.3390/separations9090247