Ultra-High-Performance Micellar Liquid Chromatography Comparing Tween 20 and Tween 40 for the Determination of Hydroxycinnamic Acids
Abstract
:1. Introduction
2. Materials and Methods
2.1. Chemicals and Samples
2.2. Instrumentation and Chromatographic Conditions
3. Results and Discussion
3.1. Retention as a Function of Temperature
3.2. Retention as a Function of Sulfuric Acid Concentration
3.3. Retention as a Function of Tween 20 and Tween 40 Percentage
3.4. Analytical Figures of Merit Comparison
3.5. Sample Analysis
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Garcia-Alvarez-Coque, M.C.; Torres-Lapasio, J.R.; Navarro-Huerta, J.A. Secondary chemical equilibria in reversed-phase liquid chromatography. In Liquid Chromatography, Fundamentals and Instrumentation, 2nd ed.; Fanali, S., Haddad, P.R., Poole, C.F., Riekkola, M.-L., Eds.; Elsevier: Amsterdam, The Netherlands, 2017; Chapter 5; pp. 125–146. [Google Scholar]
- Unal, D.R.; Yildirim, S.; Kurbanoglu, S.; Uslu, B. Current trends and roles of surfactants for chromatographic and electrochemical sensing. Trends Anal. Chem. 2021, 14, 116418. [Google Scholar] [CrossRef]
- Stepnik, K.E.; Malinowska, I.; Roj, E. Micellar liquid chromatography of plant extracts components. J. Planar Chrom. 2014, 27, 420. [Google Scholar] [CrossRef]
- Prutthiwanasan, B.; Suntornsuk, L. Improved resolution of fluoroquinolines using cetyltrimethylammonium bromide micellar electrokinetic chromatography and its application to residue analysis in surface water. J. Chromatog. B 2018, 1092, 306–312. [Google Scholar] [CrossRef] [PubMed]
- Borgerding, M.F.; Hinze, W.L. Characterization and Evaluation of the Use on Nonionic Polyoxyethylene(23)dodecanol Micellar Mobile Phases in Reversed Phase High Performance Liquid Chromatography. Anal. Chem. 1985, 57, 2183–2190. [Google Scholar] [CrossRef]
- Ke, J.; Duan, X.-Y.; Liu, X.-F.; Dong, Y.-M. Isocratic micellar liquid chromatography using mixed anionic and non-ionic surfactants as mobile phase additives for separation of 17 amino acids. Chem. Papers 2019, 73, 2417–2426. [Google Scholar] [CrossRef]
- Ibrahim, A.E.; Elmaaty, A.A.; El-Sayed, H.M. Determination of six drugs used for treatment of common cold by micellar liquid chromatography. Anal. Bioanal. Chem. 2021, 413, 5051–5065. [Google Scholar] [CrossRef] [PubMed]
- Duan, X.; Liu, X.; Dong, Y.; Duan, T.; Zhang, J.; He, S.; Yang, F.; Dong, Y. A mixed micellar liquid chromatography with direct detection for rapid analysis of eight sulfonamides in milk. Food Anal. Methods 2020, 13, 1148–1158. [Google Scholar] [CrossRef]
- Peris-García, E.; Rodríguez-Martínez, J.; Baeza-Baeza, J.J.; García-Alvarez-Coque, M.C.; Ruiz-Angel, M.J. Search of Non-Ionic Surfactants Suitable for Micellar Liquid Chromatography. Anal. Bioanal. Chem. 2018, 410, 5043–5057. [Google Scholar] [CrossRef]
- Yabre, M.; Ferey, L.; Touridomon Some, I.; Gaudin, K. Greening reversed-phase liquid chromatography methods using alternative solvents for pharmaceutical analysis. Molecules 2018, 23, 1065. [Google Scholar] [CrossRef] [Green Version]
- Fasciano, J.M.; Danielson, N.D. Micellar and Sub-Micellar Ultra-High Performance Liquid Chromatography of Hydroxybenzoic Acid and Phthalic Acid Positional Isomers. J. Chromatogr. A 2016, 1438, 150–159. [Google Scholar] [CrossRef]
- Richardson, A.E.; McPherson, S.D.; Fasciano, J.M.; Pauls, R.E.; Danielson, N.D. Micellar liquid chromatography of terephthalic acid impurities. J. Chromatog. A 2017, 1491, 67–74. [Google Scholar] [CrossRef] [PubMed]
- Ali, A.F.; Danielson, N.D. Micellar and sub-micellar liquid chromatography of terephthalic acid contaminants using a C18 column coated with Tween 20. Anal. Chim. Acta 2020, 1105, 214–223. [Google Scholar] [CrossRef]
- Patyra, E.; Kwiatek, K. Analytical capabilities of micellar liquid chromatography and application to residue and contaminant analysis. A review. J. Sep. Sci. 2021, 44, 2206–2220. [Google Scholar] [CrossRef] [PubMed]
- Haupt, D.; Pettersson, C.; Westerlund, D. Separation of (R)- and (S)-naproxen using micellar chromatography and an a1-acid-glycoprotein column: Application for chiral monitoring in human liver microsomes by coupled column chromatography. J. Biochem. Biophys. Methods 1992, 25, 273–284. [Google Scholar] [CrossRef]
- Haupt, D.; Pettersson, C.; Westerlund, D. Enantiomeric separations of remoxipride, propranolol, and trimipramine on Chiral-AGP using micellar chromatography and anionic additives. Chirality 1993, 5, 224–228. [Google Scholar] [CrossRef]
- Haupt, D.; Pettersson, C.; Westerlund, D. Retention model for the resolved enantiomers of felodipine on chiral-AGP using micellar mobile phases. Chirality 1995, 7, 23–27. [Google Scholar] [CrossRef]
- Lövgren, U.; Johansson, M.; Kronkvist, K.; Edholm, L.E. Biocompatible Sample Pretreatment for Immunochemical Techniques Using Micellar Liquid Chromatography for Separation of Corticosteroids. J. Chromatogr. B Biomed. Sci. Appl. 1995, 672, 33–44. [Google Scholar] [CrossRef]
- Rukhadze, M.D.; Sebiskveradze, M.V.; Akhalkatsi, T.G.; Makharadze, T.G. Imitation of artificial membrane system via mobile phases with Tween-80 and cholic acid in biopartitioning micellar chromatography. Biomed. Chromatog. 2006, 20, 753–759. [Google Scholar] [CrossRef] [PubMed]
- Liu, L.; Liu, X.; Chen, X.; Hu, Z. Separation and determination of tetrandrine and fangchinoline in herbal medicines by flow injection-micellar electrokinetic capillary chromatography with internal standard method. J. Chromatogr. A 2005, 1098, 177–182. [Google Scholar] [CrossRef]
- Medford, I.N. Modification of reversed-phase separations of small molecules using non-ionic surfactants and mixed ionic-non-ionic surfactants. J. Chromatogr. 1986, 368, 31–37. [Google Scholar] [CrossRef]
- Pekkarinen, S.S.; Stockmann, H.; Schwarz, K.; Heinonen, I.M.; Hopia, A.I. Antioxidant activity and partitioning of phenolic acids in bulk and emulsified methyl linoleate. J. Agric. Food Chem. 1999, 47, 3036–3043. [Google Scholar] [CrossRef] [PubMed]
- Mathew, S.; Abraham, T.E. Ferulic Acid: An Antioxidant Found Naturally in Plant Cell Walls 381 and Feruloyl Esterases Involved in Its Release and Their Applications. Crit. Rev. Biotechnol. 2004, 24, 59–83. [Google Scholar] [CrossRef] [PubMed]
- Fazary, A.E.; Ju, Y.H. Feruloyl Esterases as Biotechnological Tools: Current and Future Perspectives. Acta Biochim. Biophys. Sin. 2007, 39, 811–828. [Google Scholar] [CrossRef]
- Sgarbossa, A.; Giacomazza, D.; Di Carlo, M. Ferulic Acid: A Hope for Alzheimer’s Disease Therapy from Plants. Nutrients 2015, 7, 5764–5782. [Google Scholar] [CrossRef]
- Ou, S.; Kwok, K.C. Ferulic Acid: Pharmaceutical Functions, Preparation and Applications in Foods. J. Sci. Food Agric. 2004, 84, 1261–1269. [Google Scholar] [CrossRef]
- Kumar, N.; Pruthi, V. Potential Applications of Ferulic Acid from Natural Sources. Biotechnol. Separations 2014, 4, 86–93. [Google Scholar] [CrossRef] [Green Version]
- Solecka, D. Role of Phenylpropanoid Compounds in Plant Responses to Different Stress Factors. Acta Physiol. Plant. 1997, 19, 257–268. [Google Scholar] [CrossRef]
- Salvador, V.H.; Lima, R.B.; dos Santos, W.D.; Soares, A.R.; Böhm, P.A.F.; Marchiosi, R.; de Ferrarese, M.L.L.; Ferrarese-Filho, O. Cinnamic Acid Increases Lignin Production and Inhibits Soybean Root Growth. PLoS ONE 2013, 8, e69105. [Google Scholar] [CrossRef] [Green Version]
- Ferro, A.P.; Marchiosi, R.; Siqueira-soares, R.D.C.; Bonini, E.A. Effects of Cinnamic and Ferulic Acids on Growth and Lignification of Maize Roots. J. Allelochem. Interact. 2015, 2015, 29–38. [Google Scholar]
- El-Seedi, H.R.; El-Said, A.M.A.; Khalifa, S.A.M.; Göransson, U.; Bohlin, L.; Borg-Karlson, A.K.; Verpoorte, R. Biosynthesis, Natural Sources, Dietary Intake, Pharmacokinetic Properties, and Biological Activities of Hydroxycinnamic Acids. J. Agric. Food Chem. 2012, 60, 10877–10895. [Google Scholar] [CrossRef] [PubMed]
- De, P.; Baltas, M.; Bedos-Belval, F. Cinnamic Acid Derivatives as Anticancer Agents-A Review. Curr. Med. Chem. 2011, 18, 1672–1703. [Google Scholar] [CrossRef]
- Cosme, F.; Pinto, T.; Vilela, A. Phenolic Compounds and Antioxidant Activity in Grape Juices: A Chemical and Sensory View. Beverages 2018, 4, 22. [Google Scholar] [CrossRef] [Green Version]
- Lin, I.-J.; Cham, T.-M.; Wu, S.-M. Simultaneous Determination of Hesperidin, Ferulic Acid, Cinnamic Acid and Cinnamaldehyde in Chinese Tonic Wine by High Performance Liquid Chromatography. J. Chin. Chem. Soc. 2010, 57, 429–435. [Google Scholar] [CrossRef]
- Singleton, V.L.; Timberlake, C.F.; Lea, A.G.H. The Phenolic Cinnamates of White Grapes and Wine. J. Sci. Food Agric. 1978, 29, 403–410. [Google Scholar] [CrossRef]
- Gonçalves, J.; Silva, C.L.; Castilho, P.C.; Câmara, J.S. An Attractive, Sensitive and High-Throughput Strategy Based on Microextraction by Packed Sorbent Followed by UHPLC-PDA Analysis for Quantification of Hydroxybenzoic and Hydroxycinnamic Acids in Wines. Microchem. J. 2013, 106, 129–138. [Google Scholar] [CrossRef]
- Canas, S. Phenolic Composition and Related Properties of Aged Wine Spirits: Influence of Barrel Characteristics. A Review. Beverages 2017, 3, 55. [Google Scholar] [CrossRef] [Green Version]
- Prosekov, A.Y.; Mudrikova, O.V.; Babich, O.O. Determination of Cinnamic Acid by Capillary Zone Electrophoresis Using Ion-Pair Reagents. J. Anal. Chem. 2012, 67, 474–477. [Google Scholar] [CrossRef]
- Zhu, L.; Zhang, Y.; Lu, J. Phenolic Contents and Compositions in Skins of Red Wine Grape Cultivars among Various Genetic Backgrounds and Originations. Int. J. Mol. Sci. 2012, 13, 3492–3510. [Google Scholar] [CrossRef] [Green Version]
- Ilc, T.; Werck-reichhart, D.; Navrot, N. Meta-Analysis of the Core Aroma Components of Grape 424 and Wine Aroma. Front. Plant Sci. 2016, 7, 1472. [Google Scholar] [CrossRef] [Green Version]
- Atanackovi, M.; Cveji, J. Development of HPLC Method for Determination of Phenolic Compounds on a Core Shell Column by Direct Injection of Wine Samples. Acta Chromatogr. 2020, 32, 134–138. [Google Scholar]
- Rouseff, R.L.; Seetharaman, K.; Naim, M.; Nagy, S.; Zehavi, U. Improved HPLC Determination of Hydroxycinnamic Acids in Orange Juice Using Solvents Containing THF. J. Agric. Food Chem. 1992, 40, 1139–1143. [Google Scholar] [CrossRef]
- Irakli, M.N.; Samanidou, V.F.; Biliaderis, C.G.; Papadoyannis, I.N. Development and validation of an HPLC-method for determination of free and bound phenolic acids in cereals after solid-phase extraction. Food Chem. 2012, 134, 1624–1632. [Google Scholar] [CrossRef] [PubMed]
- Nour, V.; Trandafir, I.; Cosmulescu, S. HPLC determination of phenolic acids, flavonoids, and juglone in walnut leaves. J. Chrom. Sci. 2013, 51, 883–890. [Google Scholar] [CrossRef] [PubMed]
- Magiera, S.; Zaeba, M. Chromatographic determination of phenolic acids and flavonoids in Lycium barbarum L. and evaluation of antioxidant activity. Food Anal. Methods 2015, 8, 2665–2674. [Google Scholar] [CrossRef] [Green Version]
- Spacil, Z.; Novakova, L.; Solich, P. Analysis of phenolic compounds by high performance liquid chromatography and ultra-performance liquid chromatography. Talanta 2008, 76, 189–199. [Google Scholar] [CrossRef] [PubMed]
- Jimenez, M.S.; Velarte, R.; Castillo, J.R. Direct determination of phenolic compounds and phospholipids in virgin olive oil by micellar liquid chromatography. Food Chem. 2007, 100, 8–14. [Google Scholar] [CrossRef]
- Hadjmohammadi, M.R.; Mousavi Kiasari, Z.; Nazari, S.S.S.J. Separation of some phenolic acids in micellar liquid chromatography using design of experiment-response surface methodology. J. Anal. Chem. 2016, 71, 610–616. [Google Scholar] [CrossRef]
- Hadjmohammadi, M.R.; Nazari, S.S.S.J. Simultaneous isocratic separation of phenolic acids and flavonoids using micellar liquid chromatography. J. Sep. Sci. 2013, 36, 3667–3672. [Google Scholar] [CrossRef]
- Peris-Garcia, E.; Ortiz-Bolsico, C.; Baeza-Baeza, J.J.; Garcia-Alvarez-Coque, M.C. Isocratic and gradient elution in micellar liquid chromatography with Brij-35. J. Sep. Sci. 2015, 38, 2059–2067. [Google Scholar] [CrossRef]
- Navarro-Huerta, J.A.; Vargas-Garcia, A.G.; Torres-Lapasio, J.R.; Garcia-Alvarez-Coque, M.C. Interpretative search for optimal isocratic and gradient separations in micellar liquid chromatography in extended organic solvent domains. J. Chromatogr. A 2020, 1616, 460784. [Google Scholar] [CrossRef]
- El-Shaheny, R.N.; El-Maghrabet, M.H.; Belal, F.F. Micellar Liquid Chromatography from Green Analysis Perspective. Open Chem. 2015, 13, 877–892. [Google Scholar] [CrossRef] [Green Version]
- Hait, S.K.; Moulik, S.P. Determination of critical micelle concentration (CMC) of nonionic surfactants by donor-acceptor interaction with iodine and correlation of CMC with hydrophile-lipophile balance and other parameters of the surfactants. J. Surfact. Deterg. 2001, 4, 303–309. [Google Scholar] [CrossRef]
- Mahmood, M.E.; Al-Koofee, D.A.F. Effect of temperature changes on critical micelle 488 concentration for Tween series surfactant. Glob. J. Sci. Front. Res. Chem. 2013, 13, 1–7. [Google Scholar]
- Gilpin, R.K.; Squires, J.A. Effect of temperature on the orientation of bonded hydrocarbon phases in totally aqueous liquid chromatographic systems. J. Chrom. Sci. 1981, 19, 195–199. [Google Scholar] [CrossRef]
- Delgado Rodriguez, M.A.; Sanchez, M.J.; Gonzalez, V.; Montelongo, F.G. Role of temperature in the behavior of PAHs in micellar liquid chromatography. Thermodynamic aspects. J. Chrom. Sci. 1995, 33, 647–653. [Google Scholar] [CrossRef]
- Tanase, M.; Soare, A.; David, V.; Moldoveanu, S.C. Sources of nonlinear Van’t Hoff temperature dependence in high performance liquid chromatography. ACS Omega 2019, 4, 19808–19817. [Google Scholar] [CrossRef] [Green Version]
- Sander, L.C.; Wise, S.A. Sub-ambient temperature modification of selectivity in reversed-phase liquid chromatography. Anal. Chem. 1989, 61, 1749–1754. [Google Scholar] [CrossRef]
- Arunyanart, M.; Cline Love, L.J. Model for micellar effects on liquid chromatography capacity factors and for determination of micelle-solute equilibrium constants. Anal. Chem. 1984, 56, 1557–1561. [Google Scholar] [CrossRef]
- Ludwig, M.; Geisler, R.; Prevost, S.; von Klitzing, R. Shape and structure formation of mixed nonionic-anionic surfactant micelles. Molecules 2021, 26, 4136. [Google Scholar] [CrossRef]
- Bester-Rogac, M. Micellar properties of nonionic surfactant Tween 40 in water: Small-angle x-ray scattering study. Acta. Chim. Slov. 2007, 54, 452–459. [Google Scholar]
- Kannaiah, K.P.; Sugumaran, A.; Chanduluru, H.K.; Rathinam, S. Environmental impact of greenness assessment tools in liquid chromatography—A review. Microchem. J. 2021, 179, 106685. [Google Scholar] [CrossRef]
Name | Abbreviation | pKa | |
---|---|---|---|
1 | Chlorogenic | Clg | 3.50 |
2 | 3,4-Dihydroxy- hydrocinnamic | Dhc | 4.62 |
3 | Sinapic | Sip | 4.47 |
4 | Ferulic | Fer | 4.52 |
5 | Caffeic | Caf | 4.43 |
6 | p-Coumaric | pCm | 4.10 |
7 | m-Coumaric | mCm | 4.44 |
8 | o-Coumaric | oCm | 4.04 |
9 | Cinnamic | Cin | 4.44 |
Compound | A Intercept | B Slope | R2 |
---|---|---|---|
Clg | −1.15 | 867 | 0.9973 |
Dhc | −2.73 | 1425 | 0.9902 |
Sip | −0.0676 | 767 | 0.9978 |
Fer | −1.05 | 1150 | 0.9927 |
Caf | −1.05 | 1150 | 0.9927 |
pCm | −0.695 | 1068 | 0.9935 |
mCm | −1.04 | 1234 | 0.9912 |
oCm | −0.183 | 1039 | 0.9931 |
Cin | −0.280 | 1119 | 0.9919 |
Compound | A Intercept | B Slope | R2 |
---|---|---|---|
Fer | −3.29 | 1873 | 0.9828 |
Caf | −3.29 | 1873 | 0.9828 |
pCm | −2.76 | 1735 | 0.9831 |
mCm | −2.75 | 1786 | 0.9895 |
oCm | −1.58 | 1489 | 0.9897 |
Cin | −1.47 | 1501 | 0.9935 |
Compound | Intercept | Slope*1000 | R2 | KAM | ΦKAS[S] |
---|---|---|---|---|---|
Clg | 0.154 | 5.37 | 0.9861 | 34.9 | 6.50 |
Dhc | 0.138 | 3.44 | 0.9790 | 25.0 | 7.26 |
Sip | 0.0585 | 3.85 | 0.9897 | 65.8 | 17.1 |
Fer | 0.0440 | 3.37 | 0.9902 | 76.6 | 22.7 |
Caf | 0.0440 | 3.37 | 0.9902 | 76.6 | 22.7 |
pCm | 0.0383 | 3.20 | 0.9908 | 83.6 | 26.1 |
mCm | 0.0308 | 2.83 | 0.9907 | 91.9 | 32.5 |
oCm | 0.0203 | 2.61 | 0.9907 | 128.6 | 49.3 |
Cin | 0.0203 | 1.93 | 0.9907 | 95.1 | 49.3 |
Compound | Intercept | Slope*1000 | R2 | KAM | ΦKAS[S] |
---|---|---|---|---|---|
Clg | 0.0656 | 11.6 | 0.9869 | 176 | 15.2 |
Dhc | 0.0411 | 12.1 | 0.9881 | 294 | 24.3 |
Sip | 0.0462 | 4.74 | 0.9897 | 103 | 21.7 |
Fer | 0.0310 | 4.75 | 0.9849 | 153 | 32.3 |
Caf | 0.0364 | 4.06 | 0.9792 | 112 | 27.5 |
pCm | 0.0238 | 3.74 | 0.9782 | 157 | 42.0 |
mCm | 0.0305 | 4.06 | 0.9830 | 133 | 32.8 |
oCm | 0.0222 | 2.56 | 0.9788 | 115 | 45.0 |
Cin | 0.0185 | 2.31 | 0.9742 | 125 | 54.1 |
R2 | Intercept | Slope | Std Error | LOD nmoles | LOD mg/L | LOQ nmoles | LOQ mg/L | |
---|---|---|---|---|---|---|---|---|
Clg | 0.9987 | −0.253 | 6.401 | 0.13 | 0.061 | 4.319 | 0.203 | 14.4 |
Dhc | 0.9985 | −0.191 | 2.271 | 0.095 | 0.125 | 4.565 | 0.418 | 15.22 |
Sip | 0.9986 | −0.247 | 3.776 | 0.124 | 0.099 | 4.434 | 0.33 | 14.78 |
Fer | 0.9975 | −0.445 | 7.123 | 0.365 | 0.154 | 5.969 | 0.513 | 19.9 |
Caf | 0.9983 | −0.288 | 6.782 | 0.31 | 0.137 | 4.937 | 0.457 | 16.46 |
pCm | 0.998 | −0.525 | 9.63 | 0.516 | 0.161 | 5.276 | 0.536 | 17.59 |
mCm | 0.9988 | −1.703 | 20.85 | 0.886 | 0.127 | 4.184 | 0.425 | 13.95 |
oCm | 0.9988 | −1.54 | 17.63 | 0.736 | 0.125 | 4.111 | 0.417 | 13.7 |
Cin | 0.9988 | −2.916 | 26.54 | 1.234 | 0.14 | 4.133 | 0.465 | 13.78 |
R2 | Intercept | Slope | Std Error | LOD nmoles | LOD mg/L | LOQ nmoles | LOQ mg/L | |
---|---|---|---|---|---|---|---|---|
Clg | 0.9976 | −0.105 | 3.563 | 0.080 | 0.068 | 4.781 | 0.225 | 15.95 |
Dhc | 0.9964 | −0.372 | 2.806 | 0.152 | 0.162 | 5.904 | 0.54 | 19.68 |
Sip | 0.9967 | −0.123 | 3.273 | 0.139 | 0.127 | 5.969 | 0.423 | 18.99 |
Fer | 0.9973 | −0.468 | 6.141 | 0.272 | 0.133 | 5.156 | 0.443 | 17.2 |
Caf | 0.9975 | −0.402 | 5.703 | 0.260 | 0.137 | 4.931 | 0.456 | 16.42 |
pCm | 0.9969 | −0.324 | 7.761 | 0.430 | 0.166 | 5.452 | 0.554 | 18.17 |
mCm | 0.9987 | −1.537 | 17.27 | 0.632 | 0.109 | 3.604 | 0.366 | 12.01 |
oCm | 0.9989 | −0.548 | 13.73 | 0.458 | 0.1 | 3.285 | 0.334 | 10.95 |
Cin | 0.9978 | −2.4 | 21.75 | 1.141 | 0.158 | 4.661 | 0.525 | 15.54 |
Name of Acid | Red Wine + 100 ng Spiked HCA | Ng of Acid in Red Wine | Ppm Acid in Red Wine | %Recovery | Ng of Acid in Green Coffee | Mg Acid Per Pill |
---|---|---|---|---|---|---|
Clg | 122.6 | 21.43 | 4.286 | 91.14 | 916.1 | 183.2 |
Dhc | 338.4 | 240.8 | 4.452 | 95.99 | 62.61 | 12.52 |
Sip | 102.1 | 0 | 0 | 102.1 | 0 | 0 |
Fer | 121.1 | 17.34 | 3.468 | 103.8 | trace | 0 |
Caf | 125.2 | 28.86 | 5.772 | 91.64 | 15.89 | 3.179 |
pCm | 129.2 | 35 | 7 | 92.64 | 0 | 0 |
mCm | 107.7 | 0 | 0 | 107.7 | 18.2 | 3.639 |
oCm | 116.8 | 16.85 | 3.37 | 99.97 | 0 | 0 |
Cin | 115.5 | 21.37 | 4.274 | 94.09 | trace | 0 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ali, A.a.-k.F.; Danielson, N.D. Ultra-High-Performance Micellar Liquid Chromatography Comparing Tween 20 and Tween 40 for the Determination of Hydroxycinnamic Acids. Separations 2022, 9, 61. https://doi.org/10.3390/separations9030061
Ali Aa-kF, Danielson ND. Ultra-High-Performance Micellar Liquid Chromatography Comparing Tween 20 and Tween 40 for the Determination of Hydroxycinnamic Acids. Separations. 2022; 9(3):61. https://doi.org/10.3390/separations9030061
Chicago/Turabian StyleAli, Abd al-karim F., and Neil D. Danielson. 2022. "Ultra-High-Performance Micellar Liquid Chromatography Comparing Tween 20 and Tween 40 for the Determination of Hydroxycinnamic Acids" Separations 9, no. 3: 61. https://doi.org/10.3390/separations9030061
APA StyleAli, A. a. -k. F., & Danielson, N. D. (2022). Ultra-High-Performance Micellar Liquid Chromatography Comparing Tween 20 and Tween 40 for the Determination of Hydroxycinnamic Acids. Separations, 9(3), 61. https://doi.org/10.3390/separations9030061