Bioprocessing of Agro-Industrial Waste for Maximization of Pectinase Production by a Novel Native Strain Aspergillus cervinus ARS2 Using Statistical Approach
Abstract
:1. Introduction
2. Materials and Methods
2.1. Media and Chemicals Used
2.2. Pectinase Productionusing Submerged Fermentation and Solid-State Fermentation
2.3. One-Factor-at-a-Time Studies of Process Variables
2.4. Response Surface Methodology-Central Composite Design Optimization of Pectinase Production
2.5. Model Validation
3. Results and Discussion
3.1. Production of Pectinase Using Submerged Fermentation and Solid-State Fermentation
3.2. One-Factor-at-a-Time Studies of Process Variables
3.2.1. Effect of Substrate Particle Size
3.2.2. Effect of Moisture Content
3.2.3. Effect of Incubation Time
3.2.4. Effect of Initial pH
3.2.5. Effect of Inoculum Size
3.2.6. Effect of Incubation Temperature
3.3. Optimization of Pectinase Production
3.4. Validation of the Model
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Haile, S.; Ayele, A. Pectinase from microorganisms and its industrial applications. Sci. World J. 2022, 1881305. [Google Scholar] [CrossRef]
- Arnau, J.; Yaver, D.; Hjort, C.M. Strategies and challenges for the development of industrial enzymes using fungal cell factories. In Grand Challenges in Fungal Biotechnology; Springer: Cham, Switzerland, 2019; pp. 179–210. [Google Scholar] [CrossRef] [Green Version]
- Combo, A.M.M.; Aguedo, M.; Goffin, D.; Wathelet, B.; Paquot, M. Enzymatic production of pectic oligosaccharides from polygalacturonic acid with commercial pectinase preparations. Food Bioprod. Process. 2012, 90, 588–596. [Google Scholar] [CrossRef]
- Rebello, S.; Anju, M.; Aneesh, E.M.; Sindhu, R.; Binod, P.; Pandey, A. Recent advancements in the production and applications of microbial pectinases-an overview. Rev. Environ. Sci. Biotechnol. 2017, 16, 381–394. [Google Scholar] [CrossRef]
- Oumer, O.J.; Abate, D. Screening and molecular identification of pectinase producing microbes from coffee pulp. BioMed Res. Int. 2018, 2018, 2961767. [Google Scholar] [CrossRef]
- Kashyap, D.R.; Vohra, P.K.; Chopra, S.; Tewari, R. Applications of pectinases in the commercial sector: A review. Bioresour. Technol. 2001, 77, 215–227. [Google Scholar] [CrossRef]
- Singh, S.; Gupta, R. Apple juice clarification using fungal pectinolytic enzyme and gelatin. Indian J. Biotechnol. 2004, 3, 573–576. [Google Scholar]
- Jayani, R.S.; Saxena, S.; Gupta, R. Microbial Pectinolytic enzymes: A review. Process Biochem. 2005, 40, 2931–2944. [Google Scholar] [CrossRef]
- Rashmi, R.; Murthy, K.R.S.; Sneha, G.; Shabana, S.; Syama, A.; Radhika, V. Partial purification and biochemical characterization of extracellular pectinase from Aspergillus niger isolated from groundnut seeds. J. Appl. Biosci. 2008, 9, 378–384. [Google Scholar]
- Singh, S.; Mandal, S.K. Optimization of processing parameters for production of pectinolytic enzymes from fermented pineapple residue of mixed Aspergillus species. Jordan J. Biol. Sci. 2012, 5, 307–314. [Google Scholar]
- Demir, H.; Gogus, N.; Tari, C.; Heerd, D.; Lahore, M.F. Optimization of the process parameters for the utilization of orange peel to produce polygalacturonase by solid-state fermentation from an Aspergillus sojae mutant strain. Turk. J. Biol. 2012, 36, 394–404. Available online: https://dergipark.org.tr/en/pub/tbtkbiology/issue/11697/139664 (accessed on 10 October 2022). [CrossRef]
- Amin, S.A.; Gopinarayanan, V.E.; Nair, N.U.; Hassoun, S. Establishing synthesis pathway-hostcompatibility via enzyme solubility. Biotechnol. Bioeng. 2019, 116, 1405–1416. [Google Scholar] [CrossRef] [PubMed]
- Bhardwaj, V.; Degrassi, G.; Bhardwaj, R.K. Microbial pectinases and their applications in industries: A review. Int. J. Eng. Res. 2017, 4, 829–836. [Google Scholar] [CrossRef]
- John, J.; Kaimal, K.K.S.; Smith, M.L.; Rahman, P.K.S.M.; Chellam, P.V. Advances in upstream and downstream strategies of pectinase bioprocessing: A review. Int. J. Biol. Macromol. 2020, 162, 1086–1099. [Google Scholar] [CrossRef] [PubMed]
- Sandri, I.G.; Fontana, R.C.; Da silveira, M.M. Influence of pH and temperature on the production of polygalacturonases by Aspergillus fumigates. LWT-Food Sci. Technol. 2015, 61, 430–436. [Google Scholar] [CrossRef]
- Biz, A.; Finkler, A.T.J.; Pitol, L.O.; Medina, B.S.; Krieger, N.; Mitchell, D.A. Production of pectinases by solid state fermentation of a mixture of citrus waste and sugarcane bagasse in a pilot-scale packed bed bioreactor. Biochem. Eng. J. 2016, 111, 54–62. [Google Scholar] [CrossRef]
- Anand, G.; Yadav, S.; Yadav, D. Production, purification and biochemical characterization of an exo-polygalacturonase from Aspergillus niger MTCC478 suitable for clarification of orange juice. 3 Biotech 2017, 7, 122. [Google Scholar] [CrossRef] [Green Version]
- Huang, D.; Song, Y.; Lin, Y.; Qin, Y. A new strain of Aspergillus tubingensis for high activity pectinase production. Braz. J. Microbiol. 2019, 50, 53–65. [Google Scholar] [CrossRef]
- Li, Y.; Wang, Y.; Tu, T.; Zhang, D.; Ma, R.; You, S.; Wang, X.; Yao, B.; Luo, H.; Xu, B. Two acidic, thermophilic GH28 polygalacturonase from Talaromycesleycettanus JCM 12802 with application potentials for grape juice clarification. Food Chem. 2017, 237, 997–1003. [Google Scholar] [CrossRef]
- Ahmed, N.E.; Awad, H.M. Optimizing the production of pectinase of orange peel waste by penicillium chrysogenum MF318506 using response surface methodology in submerged fermentation. J. Microbiol. Biotechnol. Food Sci. 2021, 11, e3931. [Google Scholar] [CrossRef]
- Junior, A.N.; Mansoldo, F.R.P.; Godoy, M.G.; Firpo, R.M.; Cedrola, S.M.L.; Vermelho, A.B. Production of an endo-polygalacturonase from Fusarium proliferatum isolated from agro-industrial waste. Biocatal. Agric. Biotechnol. 2021, 38, 102199. [Google Scholar] [CrossRef]
- Mehmood, T.; Saman, T.; Irfan, M.; Anwar, F.; Ikram, M.S.; Tabassam, Q. Pectinase production from Schizophyllum commune through central composite design using citrus waste and its immobilization for industrial exploitation. Waste Biomass Valorization 2019, 10, 2527–2536. [Google Scholar] [CrossRef]
- Nabi, N.G.; Nabi, M.; Asgher, A.; Shah, H.; Sheikh, M.A.; Asad, M.J. Production of pectinase by Trichoderma harzianum in solid state fermentation of citrus peels. Pak. J. Agric. Sci. 2003, 40, 193–201. [Google Scholar]
- Ejaz, U.; Ahmed, A.; Sohail, M. Statistical optimization of immobilization of yeast cells on corncob for pectinase production. Biocatal. Agric. Biotechnol. 2018, 14, 450–456. [Google Scholar] [CrossRef]
- Handa, S.; Sharma, N.; Pathania, S. Multiple parameter optimization for maximization of pectinase production by Rhizopus sp. C4 under solid state fermentation. Fermentation 2016, 2, 10. [Google Scholar] [CrossRef] [Green Version]
- Aggarwal, R.; Dutta, T.; Sheikh, J. Extraction of pectinase from Candida isolated from textile mill effluent and its application in bio-scouring of cotton. Sustain. Chem. Pharm. 2020, 17, 100291. [Google Scholar] [CrossRef]
- Patidar, M.K.; Nighojkar, S.; Kumar, A.; Nighojkar, A. Pectinolytic enzymes- solid state fermentation, assay methods and applications in fruit juice industries: A review. 3 Biotech. 2018, 8, 199. [Google Scholar] [CrossRef]
- Wong, L.Y.; Saad, W.Z.; Mohamad, R.; Tahir, P.M. Optimization of cultural conditions for polygalacturonase production by a newly isolated Aspergillus fumigates R6 capable of retting kenaf. Ind. Crops Prod. 2017, 97, 175–183. [Google Scholar] [CrossRef]
- Demir, H.; Tari, C. Valorization of wheat bran for the production of polygalacturonase in SSF of Aspergillus sojae. Ind. Crops Prod. 2014, 54, 302–309. [Google Scholar] [CrossRef] [Green Version]
- Jahan, N.; Shahid, F.; Aman, A.; Mujahid, T.Y.; Qader, S.A.U. Utilization of agro waste pectin for the production of industrially important polygalacturonase. Heliyon 2017, 3, e00330. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mahmoodi, M.; Najafpour, G.D.; Mohammadi, M. Productionof pectinases for quality apple juice through fermentation of orange pomace. J. Food Sci. Technol. 2017, 54, 4123–4128. [Google Scholar] [CrossRef] [PubMed]
- Ortiz, G.E.; Maria, C.; Mora, P.; Noseda, D.G.; Cazabat, G.; Saravalli, C.; Lopez, M.C.; Gil, G.P.; Blasco, M.; Alberto, E.O. Pectinase production by Aspergillus giganteus in solid state fermentation: Optimization, scale up, biochemical characterization and its application in olive-oil extraction. J. Ind. Microbiol. Biotechnol. 2017, 44, 197–211. [Google Scholar] [CrossRef] [PubMed]
- Bhavikatti, J.S.; Bodducharl, S.M.; Kamagond, R.S.; Desai, S.V.; Shet, A.R. Statistical optimisation of protease production using a freshwater bacterium Chryseobacterium cucumeris SARJS-2 for multiple industrial applications. 3 Biotech. 2020, 10, 279. [Google Scholar] [CrossRef] [PubMed]
- Satapathy, S.; Rout, J.R.; Kerry, R.G.; Thatoi, H.; Sahoo, S.L. Biochemical prospects of various microbial pectinase and pectin: An approachable concept in pharmaceutical bioprocessing. Front. Nutr. 2020, 7, 117. [Google Scholar] [CrossRef] [PubMed]
- Shrestha, S.; Rahman, M.S.; Qin, W. New insights in pectinase production development and industrial applications. Appl. Microbiol. Biotechnol. 2021, 105, 9069–9087. [Google Scholar] [CrossRef] [PubMed]
- Patel, V.B.; Chatterjee, S.; Dhoble, A.S. A review on pectinase properties, application in juiceclarification, and membranes as immobilization support. J. Food Sci. 2022, 87, 3338–3354. [Google Scholar] [CrossRef] [PubMed]
- Shet, A.R.; Muhsinah, A.B.; Alsayari, A.; Achappa, S.; Desai, S.V.; Mahnashi, M.H.; Muddapur, U.M.; Shaikh, I.A.; Mannasaheb, B.A.; Khan, A.A. Media optimization by response surface methodology for the enhanced production of acidic extracellular pectinase by the indigenously isolated novel strain Aspergillus cervinus ARS2 using solid-state fermentation. Fermentation 2022, 8, 485. [Google Scholar] [CrossRef]
- Romelle, F.D.; Ashwini Rani, P.; Manohar, R.S. Chemical composition of some selected fruit peels. Eur. Food Res. Technol. 2016, 4, 12–21. [Google Scholar]
- Priyadarshini, S.; John, S. Analysis of nutrient content and physicochemical properties of newly developed sweet lime peel vinegar and sweet lime fruit-peel combo vinegar. Indian J. Appl. Res. 2014, 4, 260–262. [Google Scholar]
- Muhammad, A.; Muhammad, S.H.; Abdullah, I. Effect of pre-treatments and drying methods on dehydration and rehydration characteristics of carrot. Univers. J. Food Nutr. Sci. 2015, 3, 23–28. [Google Scholar] [CrossRef]
- Pham, T.; Nguyen, N.T.P.; Dinh, D.V.; Kieu, N.T.; Bach, L.G.; Phong, H.X.; Muoi, N.V.; Truc, T.T. Evaluate the chemical composition of peels and juice of seedless lemon (Citrus latifolia) grown in haugiang province, Vietnam. IOP Conf. Ser. Mater. Sci. Eng. 2020, 991, 012127. [Google Scholar] [CrossRef]
- Almowallad, S.A.; Aljobair, M.O.; Alkuraieef, A.N.; Aljahani, A.H. Utilization of agro-industrial orange peel and sugar beet pulp wastes for fungal endo-ploygalacturonase production. Saudi J. Biol. Sci. 2022, 29, 963–969. [Google Scholar] [CrossRef] [PubMed]
- Miller, G.L. Use of dinitrosalicylic acid reagent for determination of reducing sugar. Anal. Chem. 1959, 31, 426–428. [Google Scholar] [CrossRef]
- Li, Q.; Coffman, A.M.; Ju, L.K. Development of reproducible assays for polygalacturonase and pectinase. Enzyme Microb. Technol. 2015, 72, 42–48. [Google Scholar] [CrossRef] [PubMed]
- Altschul, S.F.; Gish, W.; Miller, W.; Myers, E.W.; Lipman, D.J. Basic local alignment search tool. J. Mol. Biol. 1990, 215, 403–410. [Google Scholar] [CrossRef] [PubMed]
- Karlin, S.; Altschul, S.F. Methods for assessing the statistical significance of molecular sequence features by using general scoring schemes. Proc. Natl. Acad. Sci. USA 1990, 87, 2264–2268. [Google Scholar] [CrossRef]
- Kute, A.B.; Mohapatra, D.; Kotwaliwale, N.; Giri, S.K.; Sawant, B.P. Characterization of pectin extracted from orange peel powder using microwave-assisted and acid extraction methods. Agric. Res. 2020, 9, 241–248. [Google Scholar] [CrossRef]
- Al Mousa, A.A.; Hassane, A.M.A.; Gomaa, A.E.-R.F.; Aljuriss, J.A.; Dahmash, N.D.; Abo-Dahab, N.F. Response-surface statistical optimization of submerged fermentation for pectinase and cellulase production by Mucor circinelloides and M. hiemalis. Fermentation 2022, 8, 205. [Google Scholar] [CrossRef]
- Heidarizadeh, M.; Fathi Rezaei, P.; Shahabivand, S. Novel pectinase from Piriformospora indica optimization of growth parameters and enzyme production in submerged culture condition. Turkish J. Biochem. 2018, 43, 289–295. [Google Scholar] [CrossRef]
- Patil, S.R.; Dayanand, A. Optimization of process for the production of fungal pectinases from deseeded sunflower head in submerged and solid-state conditions. Bioresour. Technol. 2006, 97, 2340–2344. [Google Scholar] [CrossRef]
- Maldonado, M.C.; Strasser de Saad, A.M. Production of pectinesterase and polygalacturonase by Aspergillus niger in submerged and solid-state systems. J. Ind. Microbiol. Biotechnol. 1998, 20, 34–38. [Google Scholar] [CrossRef]
- Govindaraji, P.K.; Vuppu, S. Characterisation of pectin and optimization of pectinase enzyme from novel Streptomyces fumigatiscleroticus VIT-SP4 for drug delivery and concrete crack-healing applications: An eco-friendly approach. Saudi J. Biol. Sci. 2020, 27, 3529–3540. [Google Scholar] [CrossRef] [PubMed]
- Darah, I.; Haritharan, W.; Lim, S.H. Involvement of physicochemical parameters on pectinase production by Aspergillus niger HFD5A-1. J. Pure Appl. Microbiol. 2013, 7, 2541–2549. [Google Scholar]
- Pandey, A.; Benjamin, S.; Soccol, C.R.; Nigam, P.; Krieger, N.; Soccol, V.T. The realm of microbial lipases in biotechnology. Biotechnol. Appl. Biochem. 1999, 29, 119–131. [Google Scholar]
- Darah, I.; Salikin, N.H.; Hong, L.S.; Ahmad, R.; Weloosamy, H. Pomelo peels as alternative substrate for extracellular pectinase production by Aspergillus niger HFM-8. Malays. J. Microbiol. 2013, 9, 308–316. [Google Scholar]
- Membrillo, I.; Sanchez, C.; Meneses, M.; Favela, E.; Loera, O. Particle geometry affects differentially substrate composition and enzyme profiles by Pleurotusostreatus growing on sugar cane bagasse. Bioresour. Technol. 2011, 102, 1581–1586. [Google Scholar] [CrossRef]
- Darah, L.; Taufiq, M.M.J.; Lim, S.H. Pomelo Citrus grandis (L) Osbeck Peel as an Economical Alternative Substrate for Fungal Pectinase Production. Food Sci. Biotechnol. 2013, 22, 1683–1690. [Google Scholar] [CrossRef]
- Amin, F.; Bhatti, H.N.; Bilal, M.; Asgher, M. Multiple parameter optimizations for enhanced biosynthesis of exo-polygalacturonase enzyme and its application in fruit juice clarification. Int. J. Food Eng. 2016, 13, 20160256. [Google Scholar] [CrossRef]
- Rehman, S.; Bhatti, H.N.; Bilal, M.; Asgher, M. Optimization of process variables for enhanced production of extracellular lipase by Pleurotusostreatus IBL-02 in solid-state fermentation. Pak. J. Pharm. Sci. 2019, 32, 617–624. [Google Scholar]
- Zehra, M.; Syed, M.N.; Sohail, M. Banana Peels: A promising substrate for the coproduction of Pectinase and Xylanase from Aspergillus fumigates MS16. Pol. J. Microbiol. 2020, 69, 19–26. [Google Scholar] [CrossRef]
- Botella, C.; Diaz, A.B.; Ory, I.D.; Webb, C. Xylanase and pectinase production by Aspergillus awamori on grape pomace in solid state fermentation. Process Biochem. 2007, 42, 98–101. [Google Scholar] [CrossRef]
- Barman, S.; Sit, N.; Badwaik, L.S.; Deka, S.C. Pectinase production by Aspergillus niger using banana (Musa balbisiana) peel as substrate and its effect on clarification of banana juice. J. Food Sci. Technol. 2015, 52, 3579–3589. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Satapathy, S.; Soren, J.P.; Mondal, K.C.; Srivastava, S.; Pradhan, C.; Sahoo, S.L.; Thatoi, H.; Rout, J.R. Industrially relevant pectinase production from Aspergillus parvisclerotigenus KX928754 using apple pomace as the promising substrate. J. Taibah Univ. Sci. 2021, 15, 347–356. [Google Scholar] [CrossRef]
- Abullah, R.; Jafer, A.; Nisar, K.; Kaleem, A.; Iqtedar, M.; Iftikhar, T.; Saleem, F.; Naz, S. Process optimization for pectinase production by locally isolated fungal strain using submerged fermentation. J. Biosci. 2018, 34, 1025–1032. [Google Scholar] [CrossRef] [Green Version]
- Sethi, B.K.; Nanda, P.K.; Sahoo, S. Enhanced production of pectinase by Aspergillus terreus NCFT 4269.10 using banana peels as substrate. 3 Biotech 2016, 6, 36. [Google Scholar] [CrossRef] [Green Version]
- Azzaz, H.H.; Murad, H.A.; Kholif, A.M.; Morsy, T.A.; Mansour, A.M.; El-Sayed, H.M. Pectinase production optimization and its application in banana fiber degradation. Egypt. J. Nutr. Health 2013, 16, 117–125. [Google Scholar]
- Mulluye, K.; Kebede, A.; Bussa, N. Production and optimization of pectinase from pectinolytic fungi cultivated on mango peels and pectin subjected to submerged fermentation. Biol. Med. Nat. Prod. Chem. 2021, 10, 15–21. [Google Scholar] [CrossRef]
- Esawy, M.A.; Gamal, A.A.; Kamel, Z. Optimization of Aspergillus niger NRC1ami pectinase using citrus peel pectin, purification, and thermodynamic characterization of the free and modified enzyme. Waste Biomass Valorization 2022, 13, 4823–4837. [Google Scholar] [CrossRef]
- Pagarra, H.; Rahman, R.A.; Azelee, N.I.W.; Illias, R.M. Optimization and characterization of exo-polygalacturonase by Aspergillus niger cultured via solid state fermentation. J. Teknol. 2018, 81, 59–67. [Google Scholar] [CrossRef]
Process Variables | Levels | ||||
---|---|---|---|---|---|
−α | −1 | 0 | 1 | +α | |
Substrate particle size (mm) | 0.60 | 1.18 | 1.70 | 2.00 | 2.20 |
Initial pH | 3 | 4 | 5 | 6 | 7 |
Incubation temperature (°C) | 20 | 25 | 30 | 35 | 40 |
Moisture content (%) | 80 | 90 | 100 | 110 | 120 |
Run No. | Substrate Particle Size (mm) | Initial pH | Moisture Content (%) | Incubation Temperature (°C) | Experimental Pectinase Activity (IU/mL) | Predicted Pectinase Activity (IU/mL) |
---|---|---|---|---|---|---|
1 | −1 | −1 | −1 | −1 | 64.32 ± 0.98 | 70.328 |
2 | +1 | −1 | −1 | −1 | 74.81 ± 1.27 | 74.106 |
3 | −1 | +1 | −1 | −1 | 76.89 ± 0.57 | 73.565 |
4 | +1 | +1 | −1 | −1 | 63.56 ± 0.65 | 70.372 |
5 | −1 | −1 | +1 | −1 | 80.45 ± 0.69 | 81.879 |
6 | +1 | −1 | +1 | −1 | 88.36 ± 1.08 | 91.227 |
7 | −1 | +1 | +1 | −1 | 84.49 ± 0.68 | 87.150 |
8 | +1 | +1 | +1 | −1 | 96.99 ± 0.97 | 88.226 |
9 | −1 | −1 | −1 | +1 | 71.47 ± 0.73 | 74.328 |
10 | +1 | −1 | −1 | +1 | 81.63 ± 0.65 | 82.451 |
11 | −1 | +1 | −1 | +1 | 78.64 ± 0.45 | 79.358 |
12 | +1 | +1 | −1 | +1 | 86.08 ± 0.78 | 79.949 |
13 | −1 | −1 | +1 | +1 | 85.23 ± 0.24 | 80.456 |
14 | +1 | −1 | +1 | +1 | 95.70 ± 1.12 | 94.358 |
15 | −1 | +1 | +1 | +1 | 88.15 ± 0.63 | 87.415 |
16 | +1 | +1 | +1 | +1 | 101.43 ± 0.57 | 93.144 |
17 | −2 | 0 | 0 | 0 | 86.62 ± 0.99 | 84.291 |
18 | +2 | 0 | 0 | 0 | 91.80 ± 1.54 | 101.318 |
19 | 0 | −2 | 0 | 0 | 74.30 ± 0.84 | 69.904 |
20 | 0 | +2 | 0 | 0 | 65.15 ± 1.02 | 70.321 |
21 | 0 | 0 | −2 | 0 | 73.43 ± 0.73 | 68.590 |
22 | 0 | 0 | +2 | 0 | 87.00 ± 1.00 | 94.463 |
23 | 0 | 0 | 0 | −2 | 85.15 ± 1.02 | 79.525 |
24 | 0 | 0 | 0 | +2 | 82.77 ± 0.72 | 89.944 |
25 | 0 | 0 | 0 | 0 | 101.17 ± 1.13 | 102.063 |
26 | 0 | 0 | 0 | 0 | 103.41 ± 0.65 | 102.063 |
27 | 0 | 0 | 0 | 0 | 106.35 ± 0.80 | 102.063 |
28 | 0 | 0 | 0 | 0 | 103.89 ± 0.63 | 102.063 |
29 | 0 | 0 | 0 | 0 | 103.63 ± 1.18 | 102.063 |
30 | 0 | 0 | 0 | 0 | 100.66 ± 0.61 | 102.063 |
31 | 0 | 0 | 0 | 0 | 101.26 ± 0.37 | 102.063 |
Source | DF | Seq SS | Contribution | Adj SS | Adj MS | F-Value | p-Value |
---|---|---|---|---|---|---|---|
Model | 14 | 0.006693 | 85.47% | 0.006693 | 0.000478 | 32.78 | <0.001 |
Linear | 4 | 0.002325 | 29.69% | 0.001633 | 0.000408 | 27.99 | <0.001 |
Particle Size (mm) | 1 | 0.000412 | 5.26% | 0.000007 | 0.000007 | 0.50 | 0.483 |
pH | 1 | 0.000009 | 0.12% | 0.000836 | 0.000836 | 57.35 | <0.001 |
Moisture Content (%) | 1 | 0.001676 | 21.41% | 0.001043 | 0.001043 | 71.52 | <0.001 |
Temperature(°C) | 1 | 0.000228 | 2.91% | 0.000412 | 0.000412 | 28.27 | <0.001 |
Square | 4 | 0.004118 | 52.59% | 0.004118 | 0.001030 | 70.61 | <0.001 |
Particle Size(mm) × Particle Size(mm) | 1 | 0.000000 | 0.00% | 0.000128 | 0.000128 | 8.75 | 0.004 |
pH × pH | 1 | 0.002378 | 30.37% | 0.002942 | 0.002942 | 201.74 | <0.001 |
Moisture Content (%) × Moisture Content (%) | 1 | 0.000997 | 12.73% | 0.001178 | 0.001178 | 80.78 | <0.001 |
Temperature (°C) × Temperature (°C) | 1 | 0.000743 | 9.49% | 0.000743 | 0.000743 | 50.98 | <0.001 |
2-Way Interaction | 6 | 0.000250 | 3.19% | 0.000250 | 0.000042 | 2.85 | 0.015 |
Particle Size (mm) × pH | 1 | 0.000110 | 1.41% | 0.000110 | 0.000110 | 7.55 | 0.007 |
Particle Size (mm) × Moisture Content (%) | 1 | 0.000038 | 0.48% | 0.000038 | 0.000038 | 2.60 | 0.111 |
Particle Size (mm) × Temperature (°C) | 1 | 0.000032 | 0.40% | 0.000032 | 0.000032 | 2.17 | 0.145 |
pH × Moisture Content (%) | 1 | 0.000004 | 0.05% | 0.000004 | 0.000004 | 0.25 | 0.617 |
pH × Temperature (°C) | 1 | 0.000005 | 0.06% | 0.000005 | 0.000005 | 0.34 | 0.563 |
Moisture Content (%) × Temperature (°C) | 1 | 0.000061 | 0.78% | 0.000061 | 0.000061 | 4.20 | 0.044 |
Error | 78 | 0.001137 | 14.53% | 0.001137 | 0.000015 | ||
Lack of fit | 10 | 0.001085 | 13.86% | 0.001085 | 0.000108 | 140.54 | <0.001 |
Pure Error | 68 | 0.000052 | 0.67% | 0.000052 | 0.000001 | ||
Total | 92 | 0.007830 | 100.00% |
Process Variables | Optimal Values | Predicted Pectinase Activity (IU/mL) | Experimental Pectinase Activity (IU/mL) |
---|---|---|---|
Particle size (mm) | 2.0 | 106.31 | 107.14 ± 0.71 |
Initial pH | 4.9 | ||
Moisture content (%) | 107 | ||
Incubation temperature (°C) | 31.5 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Shet, A.R.; Muhsinah, A.B.; Alhazmi, A.Y.; Achappa, S.; Desai, S.V.; Mahnashi, M.H.; Muddapur, U.M.; Khan, A.A.; Shaikh, I.A. Bioprocessing of Agro-Industrial Waste for Maximization of Pectinase Production by a Novel Native Strain Aspergillus cervinus ARS2 Using Statistical Approach. Separations 2022, 9, 438. https://doi.org/10.3390/separations9120438
Shet AR, Muhsinah AB, Alhazmi AY, Achappa S, Desai SV, Mahnashi MH, Muddapur UM, Khan AA, Shaikh IA. Bioprocessing of Agro-Industrial Waste for Maximization of Pectinase Production by a Novel Native Strain Aspergillus cervinus ARS2 Using Statistical Approach. Separations. 2022; 9(12):438. https://doi.org/10.3390/separations9120438
Chicago/Turabian StyleShet, Anil R., Abdullatif Bin Muhsinah, Abdulfattah Y. Alhazmi, Sharanappa Achappa, Shivalingsarj V. Desai, Mater H. Mahnashi, Uday M. Muddapur, Aejaz Abdullatif Khan, and Ibrahim Ahmed Shaikh. 2022. "Bioprocessing of Agro-Industrial Waste for Maximization of Pectinase Production by a Novel Native Strain Aspergillus cervinus ARS2 Using Statistical Approach" Separations 9, no. 12: 438. https://doi.org/10.3390/separations9120438
APA StyleShet, A. R., Muhsinah, A. B., Alhazmi, A. Y., Achappa, S., Desai, S. V., Mahnashi, M. H., Muddapur, U. M., Khan, A. A., & Shaikh, I. A. (2022). Bioprocessing of Agro-Industrial Waste for Maximization of Pectinase Production by a Novel Native Strain Aspergillus cervinus ARS2 Using Statistical Approach. Separations, 9(12), 438. https://doi.org/10.3390/separations9120438