Inter-Comparisons of Major Ions and Organic Matter Using Aerodyne Aerosol Mass Spectrometer, Ion Chromatography and Sunset Lab Carbon Analyzer in Aged Aerosols from Okinawa in the Western North Pacific Rim
Abstract
:1. Introduction
2. Samples and Analytical Procedure
2.1. Site Description and Aerosol Sampling
2.2. Offline Chemical Analysis
2.3. Online Aerodyne AMS Measurements
3. Results and Discussion
3.1. Comparison of Ions Obtained from Aerodyne AMS and Ion Chromatograph
3.2. OMAMS versus OCSunset
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Kawamura, K.; Ikushima, K. Seasonal changes in the distribution of dicarboxylic acids in the urban atmosphere. Environ. Sci. Technol. 1993, 27, 2227–2235. [Google Scholar] [CrossRef]
- Nakayama, T.; Matsumi, Y.; Sato, K.; Imamura, T.; Yamazaki, A.; Uchiyama, A. Laboratory studies on optical properties of secondary organic aerosols generated during the photooxidation of toluene and the ozonolysis of α-pinene. J. Geophys. Res. Atmos. 2010, 115. [Google Scholar] [CrossRef]
- Pavuluri, C.M.; Kawamura, K.; Swaminathan, T. Water-soluble organic carbon, dicarboxylic acids, ketoacids, and α-dicarbonyls in the tropical Indian aerosols. J. Geophys. Res. Atmos. 2010, 115. [Google Scholar] [CrossRef] [Green Version]
- Li, Y.J.; Yeung, J.W.T.; Leung, T.P.I.; Lau, A.P.S.; Chan, C.K. Characterization of Organic Particles from Incense Burning Using an Aerodyne High-Resolution Time-of-Flight Aerosol Mass Spectrometer. Aerosol Sci. Technol. 2012, 46, 654–665. [Google Scholar] [CrossRef]
- Williams, L.R.; Gonzalez, L.A.; Peck, J.; Trimborn, D.; McInnis, J.; Farrar, M.R.; Moore, K.D.; Jayne, J.T.; Robinson, W.A.; Lewis, D.K.; et al. Characterization of an aerodynamic lens for transmitting particles greater than 1 micrometer in diameter into the Aerodyne aerosol mass spectrometer. Atmos. Meas. Tech. 2013, 3, 3271–3280. [Google Scholar] [CrossRef] [Green Version]
- Peck, J.; Gonzalez, L.A.; Williams, L.R.; Xu, W.; Croteau, P.L.; Timko, M.T.; Jayne, J.T.; Worsnop, D.R.; Miake-Lye, R.C.; Smith, K.A. Development of an aerosol mass spectrometer lens system for PM2.5. Aerosol Sci. Technol. 2016, 50, 781–789. [Google Scholar] [CrossRef]
- Jayne, J.T.; Leard, D.C.; Zhang, X.; Davidovits, P.; Smith, K.A.; Kolb, C.E.; Worsnop, D.R. Development of an Aerosol Mass Spectrometer for Size and Composition Analysis of Submicron Particles. Aerosol Sci. Technol. 2000, 33, 49–70. [Google Scholar] [CrossRef] [Green Version]
- Allan, J.D.; Delia, A.E.; Coe, H.; Bower, K.N.; Alfarra, M.R.; Jimenez, J.L.; Middlebrook, A.M.; Drewnick, F.; Onasch, T.B.; Canagaratna, M.R.; et al. A generalised method for the extraction of chemically resolved mass spectra from Aerodyne aerosol mass spectrometer data (Technical Note). J. Aerosol Sci. 2004, 35, 909–922. [Google Scholar] [CrossRef]
- Middlebrook, A.M.; Murphy, D.M.; Lee, S.-H.; Thomson, D.S.; Prather, K.A.; Wenzel, R.J.; Liu, D.-Y.; Phares, D.J.; Rhoads, K.P.; Wexler, A.S.; et al. A Comparison of Particle Mass Spectrometers During the 1999 Atlanta Supersite Project. J. Geophys. Res. Atmos. 2003, 108. [Google Scholar] [CrossRef]
- Zhang, X.; Smith, K.A.; Worsnop, D.R.; Jimenez, J.; Jayne, J.T.; Kolb, C.E. A Numerical Characterization of Particle Beam Collimation by an Aerodynamic Lens-Nozzle System: Part I. An Individual Lens or Nozzle. Aerosol Sci. Technol. 2002, 36, 617–631. [Google Scholar] [CrossRef]
- Ovadnevaite, J.; O’Dowd, C.; Dall’Osto, M.; Ceburnis, D.; Worsnop, D.R.; Berresheim, H. Detecting High Contributions of Primary Organic Matter to Marine Aerosol: A Case Study. Geophys. Res. Lett. 2011, 38. [Google Scholar] [CrossRef]
- Takegawa, N.; Miyakawa, T.; Kawamura, K.; Kondo, Y. Contribution of selected dicarboxylic and ω-oxocarboxylic acids in ambient aerosol to the m/z 44 signal of an Aerodyne aerosol mass spectrometer. Aerosol Sci. Technol. 2007, 41, 418–437. [Google Scholar] [CrossRef] [Green Version]
- Drewnick, F.; Schwab, J.J.; Hogrefe, O.; Peters, S.; Husain, L.; Diamond, D.; Weber, R.; Demerjian, K.L. Intercomparison and Evaluation of Four Semi-continuous PM2.5 Sulfate Instruments. Atmos. Environ. 2003, 37, 3335–3350. [Google Scholar] [CrossRef]
- Jimenez, J.L.; Jayne, J.T.; Shi, Q.; Kolb, C.E.; Worsnop, D.R.; Yourshaw, I.; Seinfeld, J.H.; Flagan, R.C.; Zhang, X.; Smith, K.A.; et al. Ambient aerosol sampling using the Aerodyne aerosol mass spectrometer. J. Geophys. Res. Atmos. 2003, 108. [Google Scholar] [CrossRef] [Green Version]
- Schneider, J.; Borrmann, S.; Wollny, A.G.; Bläsner, M.; Mihalopoulos, N.; Oikonomou, K.; Sciare, J.; Teller, A.; Levin, Z.; Worsnop, D.R. Online Mass Spectrometric Aerosol Measurements During the MINOS Campaign (Crete, August 2001). Atmos. Chem. Phys. 2004, 4, 65–80. [Google Scholar] [CrossRef] [Green Version]
- Takegawa, N.; Miyazaki, Y.; Kondo, Y.; Komazaki, Y.; Miyakawa, T.; Jimenez, J.L.; Jayne, J.T.; Worsnop, D.R.; Allan, J.D.; Weber, R.J. Characterization of an Aerodyne Aerosol Mass Spectrometer (AMS): Intercomparison with other aerosol instruments. Aerosol Sci. Technol. 2005, 39, 760–770. [Google Scholar] [CrossRef]
- Zhang, Q.; Worsnop, D.R.; Canagaratna, M.R.; Jimenez, J.L. Hydrocarbon-like and Oxygenated Organic Aerosols in Pittsburgh: Insights into Sources and Processes of Organic Aerosols. Atmos. Chem. Phys. 2005, 5, 3289–3311. [Google Scholar] [CrossRef] [Green Version]
- Garstang, M.; Ellery, W.N.; McCarthy, T.S.; Scholes, M.C.; Scholes, R.J.; Swap, R.J.; Tyson, P.D. The contribution of aerosol- and water-borne nutrients to the functioning of the Okavango Delta ecosystem, Botswana. South Afr. J. Sci. 1998, 94, 223–229. [Google Scholar]
- Seinfeld, J.; Pandis, S.N. Atmospheric Chemistry and Physics: From Air Pollution to Climate Change, 2nd ed.; John Wiley & Sons, Inc.: Hoboken, NJ, USA, 1998. [Google Scholar]
- Wittig, A.E.; Anderson, N.; Khlystov, A.; Pandis, S.N.; Davidson, C.; Robinson, A.L. Pittsburgh air 16 quality study overview. Atmos. Environ. 2004, 38, 3107–3125. [Google Scholar] [CrossRef]
- Pan, Y.P.; Wang, Y.S.; Tang, G.Q.; Wu, D. Wet and dry deposition of atmospheric nitrogen at ten sites in Northern China. Atmos. Chem. Phys. 2012, 12, 6515–6535. [Google Scholar] [CrossRef] [Green Version]
- Liu, X.; Xu, W.; Pan, Y.; Du, E. Liu et al. suspect that Zhu et al. (2015) may have underestimated dissolved organic nitrogen (N) but overestimated total particulate N in wet deposition in China. Sci. Total Environ. 2015, 520, 300–301. [Google Scholar] [CrossRef] [PubMed]
- Yeatman, S.G.; Spokes, L.J.; Dennis, P.F.; Jickells, T.D. Comparisons of aerosol nitrogen isotopic composition at two pollutedcoastal sites. Atmos. Environ. 2001, 35, 1307–1320. [Google Scholar] [CrossRef]
- Zhang, Q.; Anastasio, C.; Jimenez-Cruz, M. Water-soluble organic nitrogen in atmospheric fine particles (PM2.5) from northern California. J. Geophys. Res. Atmos. 2002, 107. [Google Scholar] [CrossRef] [Green Version]
- Mace, K.A.; Duce, R.A.; Tindale, N.W. Organic nitrogen in rain and aerosol at Cape Grim, Tasmania, Australia. J. Geophys. Res. Atmos. 2003, 108. [Google Scholar] [CrossRef] [Green Version]
- Duan, F.; Liu, X.; He, K.; Dong, S. Measurements and characteristics of nitrogen-containing compounds in atmospheric particulate matter in Beijing, China. Bull. Environ. Contam. Toxicol. 2009, 82, 332–337. [Google Scholar] [CrossRef] [PubMed]
- Kunwar, B.; Kawamura, K. One-year observations of carbonaceous and nitrogenous components and major ions in the aerosols from subtropical Okinawa Island, an outflow region of Asian dusts. Atmos. Chem. Phys. 2014, 14, 1819–1836. [Google Scholar] [CrossRef] [Green Version]
- Kunwar, B.; Torii, K.; Zhu, C.; Fu, P.; Kawamura, K. Springtime variations of organic and inorganic constituents in submicron aerosols (PM1.0) from Cape Hedo, Okinawa. Atmos. Environ. 2016, 130, 84–94. [Google Scholar] [CrossRef]
- Takami, A.; Miyoshi, T.; Shimono, A.; Kaneyasu, N.; Kato, S.; Kajii, Y.; Hatakeyama, S. Transport of anthropogenic aerosols from Asia and subsequent chemical transformation. J. Geophys. Res. Atmos. 2007, 112. [Google Scholar] [CrossRef]
- Pavuluri, C.M.; Kawamura, K.; Aggarwal, S.G.; Swaminathan, T. Characteristics, seasonality and sources of carbonaceous and ionic components in the tropical aerosols from Indian region. Atmos. Chem. Phys. 2011, 11, 8215–8230. [Google Scholar] [CrossRef] [Green Version]
- Kawamura, K.; Watanabe, T. Determination of stable carbon isotopic compositions of low molecular weight dicarboxylic acids and ketocarboxylic acids in atmospheric aerosol and snow samples. Anal. Chem. 2004, 76, 5762–5768. [Google Scholar] [CrossRef]
- Kunwar, B.; Kawamura, K.; Zhu, C. Stable carbon and nitrogen isotopic compositions of ambient aerosols collected from Okinawa Island in the western North Pacific Rim, an outflow region of Asian dusts and pollutants. Atmos. Environ. 2016, 131, 243–253. [Google Scholar] [CrossRef]
- Stephanou, E.G.; Stratigakis, N. Oxocarboxylic and α,ω-dicarboxylic acids: Photooxidation products of biogenic unsaturated fatty acids present in urban aerosols. Environ. Sci. Technol. 1993, 27, 1403–1407. [Google Scholar] [CrossRef]
- Kundu, S.; Kawamura, K.; Andreae, T.W.; Hoffer, A.; Andreae, M.O. Molecular distributions of dicarboxylic acids, ketocarboxylic acids and dicarbonyls in biomass burning aerosols: Implications for photochemical production and degradation in smoke layers. Atmos. Chem. Phys. 2010, 10, 2209–2225. [Google Scholar] [CrossRef] [Green Version]
- Farmer, D.K.; Matsunaga, A.; Docherty, K.S.; Surratt, J.D.; Seinfeld, J.H.; Ziemann, P.J.; Jimenez, J.L. Response of an aerosol mass spectrometer to organonitrates and organosulfates and implications for atmospheric chemistry. Proc. Natl. Acad. Sci. USA 2010, 107, 6670–6675. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mochizuki, T.; Kawamura, K.; Aoki, K. Water-Soluble Organic Nitrogen in High Mountain Snow Samples from Central Japan. Aerosol Air Qual. Res. 2016, 16, 632–639. [Google Scholar] [CrossRef] [Green Version]
- Wang, G.; Kawamura, K.; Umemoto, N.; Xie, M.; Hu, S.; Wang, Z. Water-soluble organic compounds in PM2.5 and size-segregated aerosols over Mount Tai in North China Plain. J. Geophys. Res. Atmos. 2009, 114. [Google Scholar] [CrossRef] [Green Version]
- Laskin, A.; Smith, J.S.; Laskin, J. Molecular Characterization of Nitrogen-Containing Organic Compounds in Biomass Burning Aerosols Using High-Resolution Mass Spectrometry. Environ. Sci. Technol. 2009, 43, 3764–3771. [Google Scholar] [CrossRef] [PubMed]
- Liang, Y.; Wang, X.; Dong, S.; Liu, Z.; Mu, J.; Lu, C.; Zhang, J.; Li, M.; Xue, L.; Wang, W. Size distributions of nitrated phenols in winter at a coastal site in north China and the impacts from primary sources and secondary formation. Chemosphere 2020, 250, 126256. [Google Scholar] [CrossRef]
- Li, M.; Wang, X.; Lu, C.; Li, R.; Zhang, J.; Dong, S.; Yang, L.; Xue, L.; Chen, J.; Wang, W. Nitrated phenols and the phenolic precursors in the atmosphere in urban Jinan, China. Sci. Total Environ. 2020, 714, 136760. [Google Scholar] [CrossRef]
- Lu, C.; Wang, X.; Li, R.; Gu, R.; Zhang, Y.; Li, W.; Gao, R.; Chen, B.; Xue, L.; Wang, W. Emissions of fine particulate nitrated phenols from residential coal combustion in China. Atmos. Environ. 2019, 203, 10–17. [Google Scholar] [CrossRef]
- Li, X.; Zhang, Y.; Shi, L.; Kawamura, K.; Kunwar, B.; Takami, A.; Arakaki, T.; Lai, S. Aerosol proteinaceous matter in coastal Okinawa, Japan: Influence of long-range transport and photochemical degradation. Environ. Sci. Technol. 2022, 56, 5256–5265. [Google Scholar] [CrossRef] [PubMed]
- Turpin, B.J.; Lim, H.-J. Species contributions to PM2.5 mass concentrations: Revisiting common assumptions for estimating organic mass. Aerosol Sci. Technol. 2001, 35, 602–610. [Google Scholar] [CrossRef]
- Simon, H.; Bhave, P.V.; Swall, J.L.; Frank, N.H.; Malm, W.C. Determining the spatial and seasonal variability in OM/OC ratios across the US using multiple regression. Atmos. Chem. Phys. 2011, 11, 2933–2949. [Google Scholar] [CrossRef] [Green Version]
- Maria, S.F.; Russell, L.M.; Turpin, B.J.; Porcja, R.J.; Campos, T.L.; Weber, R.J.; Huebert, B.J. Source signatures of carbon monoxide and organic functional groups in Asian Pacific Regional Aerosol Characterization Experiment (ACE-Asia) submicron aerosol types. J. Geophys. Res. Atmos. 2003, 108. [Google Scholar] [CrossRef] [Green Version]
- Aiken, A.C.; DeCarlo, P.F.; Kroll, J.H.; Worsnop, D.R.; Huffman, J.A.; Docherty, K.S.; Ulbrich, I.M.; Mohr, C.; Kimmel, J.R.; Sueper, D.; et al. O/C and OM/OC ratios of primary, secondary, and ambient organic aerosols with high-resolution time-of-flight aerosol mass spectrometry. Environ. Sci. Technol. 2008, 42, 4478–4485. [Google Scholar] [CrossRef] [PubMed]
- Polidori, A.; Turpin, B.J.; Davidson, C.I.; Rodenburg, L.A.; Maimone, F. Organic PM2.5: Fractionation by polarity, FTIR spectroscopy, and OM/OC ratio for the Pittsburgh aerosol. Aerosol Sci. Technol. 2008, 42, 233–246. [Google Scholar] [CrossRef]
- Aiken, A.C.; Salcedo, D.; Cubison, M.J.; Huffman, J.A.; DeCarlo, P.F.; Ulbrich, I.M.; Docherty, K.S.; Sueper, D.; Kimmel, J.R.; Worsnop, D.R.; et al. Mexico City aerosol analysis during MILAGRO using high resolution aerosol mass spectrometry at the urban supersite (T0)—Part 1: Fine particle composition and organic source apportionment. Atmos. Chem. Phys. 2009, 9, 6633–6653. [Google Scholar] [CrossRef] [Green Version]
- DeCarlo, P.F.; Kimmel, J.R.; Trimborn, A.; Northway, M.J.; Jayne, J.T.; Aiken, A.C.; Gonin, M.; Fuhrer, K.; Horvath, T.; Docherty, K.S.; et al. Field-deployable, high-resolution, time-of-flight aerosol mass spectrometer. Anal. Chem. 2006, 78, 8281–8289. [Google Scholar] [CrossRef]
- Xu, J.; Zhang, Q.; Shi, J.; Ge, X.; Xie, C.; Wang, J.; Kang, S.; Zhang, R.; Wang, Y. Chemical characteristics of submicron particles at the central Tibetan Plateau: Insights from aerosol mass spectrometry. Atmos. Chem. Phys. 2018, 18, 427–443. [Google Scholar] [CrossRef] [Green Version]
- Brown, S.G.; Lee, T.; Roberts, P.T.; Collett, J.L., Jr. Variations in the OM/OC ratio of urban organic aerosol next to a major roadway. J. Air Waste Manag. Assoc. 2013, 63, 1422–1433. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chirico, R.; DeCarlo, P.F.; Heringa, M.F.; Tritscher, T.; Richter, R.; Prévôt, A.S.H.; Dommen, J.; Weingartner, E.; Wehrle, G.; Gysel, M.; et al. Impact of aftertreatment devices on primary emissions and secondary organic aerosol formation potential from in-use diesel vehicles: Results from smog chamber experiments. Atmos. Chem. Phys. 2010, 10, 11545–11563. [Google Scholar] [CrossRef]
- Reff, A.; Bhave, P.V.; Simon, H.; Pace, T.G.; Pouliot, G.A.; Mobley, J.D.; Houyoux, M. Emissions inventory of PM2.5 trace elements across the United States. Environ. Sci. Technol. 2009, 43, 5790–5796. [Google Scholar] [CrossRef] [PubMed]
- Kleindienst, T.E.; Jaoui, M.; Lewandowski, M.; Offenberg, J.H.; Lewis, C.W.; Bhave, P.V.; Edney, E.O. Estimates of the contributions of biogenic and anthropogenic hydrocarbons to secondary organic aerosol at a southeastern US location. Atmos. Environ. 2007, 41, 8288–8300. [Google Scholar] [CrossRef]
- Deshmukh, D.K.; Kawamura, K.; Lazaar, M.; Kunwar, B.; Boreddy, S.K.R. Dicarboxylic acids, oxoacids, benzoic acid, α-dicarbonyls, WSOC, OC, and ions in spring aerosols from Okinawa Island in the western North Pacific Rim: Size distributions and formation processes. Atmos. Chem. Phys. 2016, 16, 5263–5282. [Google Scholar] [CrossRef] [Green Version]
- Kunwar, B.; Torii, K.; Kawamura, K. Springtime influences of Asian outflow and photochemistry on the distributions of diacids, oxoacids and α-dicarbonyls in the aerosols from the western North Pacific rim. Tellus B: Chem. Phys. Meteorol. 2017, 69, 1369341. [Google Scholar] [CrossRef] [Green Version]
- Timonen, H.; Carbone, S.; Aurela, M.; Saarnio, K.; Saarikoski, S.; Ng, N.L.; Canagaratna, M.R.; Kulmala, M.; Kerminen, V.-M.; Worsnop, D.R.; et al. Characteristics, sources and water-solubility of ambient submicron organic aerosol in springtime in Helsinki, Finland. J. Aerosol Sci. 2013, 56, 61–77. [Google Scholar] [CrossRef]
- Canagaratna, M.R.; Jimenez, J.L.; Kroll, J.H.; Chen, Q.; Kessler, S.H.; Massoli, P.; Ruiz, L.H.; Fortner, E.; Williams, L.R.; Wilson, K.R.; et al. Elemental ratio measurements of organic compounds using Aerosol mass spectrometry: Characterization, improved calibration, and implications. Atmos. Chem. Phys. 2015, 15, 253–272. [Google Scholar] [CrossRef] [Green Version]
- Sato, K.; Takami, A.; Isozaki, T.; Hikida, T.; Shimono, A.; Imamura, T. Mass spectrometric study of secondary organic aerosol formed from the photo-oxidation of aromatic hydrocarbons. Atmos. Environ. 2010, 44, 1080–1087. [Google Scholar] [CrossRef]
Species | Av ± SD | Range (Min-Max) |
---|---|---|
(μg m−3) | ||
Total organics by AMS | 2.5 ± 1.2 | 1.0–5.9 |
OC by Sunset Lab | 1.2 ± 0.59 | 0.41–2.5 |
EC by Sunset Lab | 0.36 ± 0.23 | 0.41–2.5 |
SO42− byAMS | 6.2 ± 3.0 | 1.7–15 |
NO3− byAMS | 0.11 ± 0.05 | 0.03–0.31 |
NH4+ byAMS | 2.1 ± 1.0 | 0.6–5.0 |
TN by elemental analyzer | 2.2 ± 1.2 | 0.5–5.1 |
SO42− by IC | 7.7 ± 4.2 | 1.7–19 |
NO3− by IC | 0.06–0.13 | ND-0.58 |
NH4+ by IC | 2.3 ± 1.2 | 0.43–5.0 |
NH4+AMS | NH4+IC | |
---|---|---|
Mean | 6.2 | 7 |
Variance | 9.4 | 18 |
Observations | 28 | 28 |
df | 27 | 27 |
F | 0.5 | |
P(F≤ f) one-tail | 0.04 | |
F Critical one-tail | 0.5 |
SO42−AMS | SO42−IC | |
---|---|---|
Mean | 7.8 | 6 |
Variance | 18 | 10 |
Observations | 27 | 27 |
df | 26 | 26 |
F | 1.9 | |
P(F≤ f) one-tail | 0.05 | |
F Critical one-tail | 1.9 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kunwar, B.; Torii, K.; Takami, A.; Kawamura, K. Inter-Comparisons of Major Ions and Organic Matter Using Aerodyne Aerosol Mass Spectrometer, Ion Chromatography and Sunset Lab Carbon Analyzer in Aged Aerosols from Okinawa in the Western North Pacific Rim. Separations 2022, 9, 430. https://doi.org/10.3390/separations9120430
Kunwar B, Torii K, Takami A, Kawamura K. Inter-Comparisons of Major Ions and Organic Matter Using Aerodyne Aerosol Mass Spectrometer, Ion Chromatography and Sunset Lab Carbon Analyzer in Aged Aerosols from Okinawa in the Western North Pacific Rim. Separations. 2022; 9(12):430. https://doi.org/10.3390/separations9120430
Chicago/Turabian StyleKunwar, Bhagawati, Kazuhiro Torii, Akinori Takami, and Kimitaka Kawamura. 2022. "Inter-Comparisons of Major Ions and Organic Matter Using Aerodyne Aerosol Mass Spectrometer, Ion Chromatography and Sunset Lab Carbon Analyzer in Aged Aerosols from Okinawa in the Western North Pacific Rim" Separations 9, no. 12: 430. https://doi.org/10.3390/separations9120430
APA StyleKunwar, B., Torii, K., Takami, A., & Kawamura, K. (2022). Inter-Comparisons of Major Ions and Organic Matter Using Aerodyne Aerosol Mass Spectrometer, Ion Chromatography and Sunset Lab Carbon Analyzer in Aged Aerosols from Okinawa in the Western North Pacific Rim. Separations, 9(12), 430. https://doi.org/10.3390/separations9120430