Box–Behnken Design Used to Optimize the Simultaneous Quantification of Amitriptyline and Propranolol in Tablet Dosages by RP-HPLC-DAD Method and Their Stability Tests
Abstract
:1. Introduction
2. Materials and Methods
2.1. Chemicals
2.2. Instrumentation
2.3. QbD Concept Use to Optimize the Chromatographic Conditions
2.4. Risk Assessment Studies
2.5. Optimization
2.6. RP-HPLC-DAD Method Development
2.7. RP-HPLC-DAD Method Validation
2.8. Quantitative Analysis of Tablets
2.9. Forced Degradation Study
3. Results and Discussion
3.1. Optimization
3.2. Calibration Curve
3.3. Method Validation
3.4. Quantitative Analysis of Tablet
3.5. Forced Degradation Study
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Shaikh, S.; Jadhav, P. RP-HPLC Method Development and Validation for the Simultaneous Estimation of Amitriptyline Hydrochloride and Pantoprazole Sodiumin Bulk and Capsule Dosage Form. J. Drug Deliv. Ther. 2019, 9, 37–42. [Google Scholar]
- Shabir, G.A. Development and Validation of RP-HPLC Method for the Determination of Methamphetamine and Propranolol in Tablet Dosage Form. Indian J. Pharm. Sci. 2011, 73, 430–435. [Google Scholar] [CrossRef] [PubMed]
- Sprenger, T.; Viana, M.; Tassorelli, C. Current Prophylactic Medications for Migraine and Their Potential Mechanisms of Action. Neurotherapeutics 2018, 15, 313–323. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ferguson Glenda, K. Quantitative HPLC Analysis of a Psychotherapeutic Medication: Simultaneous Determination of Amitriptyline Hydrochloride and Perphenazine. J. Chem. Educ. 1998, 75, 1615–1618. [Google Scholar] [CrossRef]
- Kudo, K.; Jitsufuchi, N.; Imamura, T. Selective determination of amitriptyline and nortriptyline in human plasma by HPLC with ultraviolet and particle beam mass spectrometry. J. Anal. Toxicol. 1997, 21, 185–189. [Google Scholar] [CrossRef] [Green Version]
- Bose, D.; Durgbanshi, A.; Martinavarro-Domínguez, A.; Capella-Peiró, M.E.; Carda-Broch, S.; Esteve-Romero, J.; Gil-Agustí, M. Amitriptyline and nortriptyline serum determination by micellar liquid chromatography. J. Pharmacol. Toxicol. Methods 2005, 52, 323–329. [Google Scholar] [CrossRef]
- Hamed Mosavian, M.T.; Es’haghi, Z.; Razavi, N.; Banihashemi, S. Pre-concentration and determination of amitriptyline residues in waste water by ionic liquid based immersed droplet microextraction and HPLC. J. Pharm. Anal. 2012, 2, 361–365. [Google Scholar] [CrossRef] [Green Version]
- Linden, R.; Antunes, M.V.; Ziulkoski, A.L.; Wingert, M.; Tonello, P.; Tzvetkov, M.; Souto, A.A. Determination of amitriptyline and its main metabolites in human plasma samples using HPLC-DAD: Application to the determination of metabolic ratios after single oral dose of amitriptyline. J. Braz. Chem. Soc. 2008, 19, 35–41. [Google Scholar] [CrossRef] [Green Version]
- Patel, S.; Patel, N.J. Spectrophotometric and chromatographic simultaneous estimation of amitriptyline hydrochloride and chlordiazepoxide in tablet dosage forms. Indian J. Pharm. Sci. 2009, 71, 472–476. [Google Scholar] [CrossRef] [Green Version]
- Salman, S.A.; Sulaiman, S.A.; Ismail, Z.; Gan, S.H. Quantitative determination of propranolol by ultraviolet HPLC in human plasma. Toxicol. Mech. Methods 2010, 20, 137–142. [Google Scholar] [CrossRef]
- Abdel-Hamid, M.E. High-performance liquid chromatographic determination of propranolol and 4-hydroxypropranolol in serum. J. Clin. Pharm. Ther. 1988, 13, 183–189. [Google Scholar] [CrossRef] [PubMed]
- Guttendorf, R.J.; Kostenbauder, H.B.; Wedlund, P.J. Quantification of propranolol enantiomers in small blood samples from rats by reversed-phase high-performance liquid chromatography after chiral derivatization. J. Chromatogr. 1989, 489, 333–343. [Google Scholar] [CrossRef] [PubMed]
- Alanazi, A.M.; Hefnawy, M.M.; AL-Majed, A.A.A.; AL-Suwailem, A.K.; Kassem, M.G.; Mostafa, G.A.; Attia, S.M.; Khedr, M.M. HPLC-fluorescence method for the enantioselective analysis of propranolol in rat serum using immobilized polysaccharide-based chiral stationary phase. Chirality 2014, 26, 194–199. [Google Scholar] [CrossRef] [PubMed]
- Panchagnula, R.; Bansal, T.; Varma, M.V.; Kaul, C.L. Reversed-phase liquid chromatography with ultraviolet detection for simultaneous quantitation of indinavir and propranolol from ex-vivo rat intestinal permeability studies. J. Chromatogr. B Analyt. Technol. Biomed. Life Sci. 2004, 806, 277–282. [Google Scholar] [CrossRef]
- John, C.; Chainulu, C.; Ghosh, P.; Srivastava, S.; Shukla, S.; Satyanarayana, S. Validated High Performance Thin Layer Chromatography Method for the Simultaneous Determination of Amitriptyline, Atenolol and Propranolol. Asian J. Res. Chem. 2011, 4, 1059–1063. [Google Scholar]
- Schaefer, H.G.; Spahn, H.L.M.; Derendorf, H. Simultaneous determination of propranolol and 4-hydroxypropranolol enantiomers after chiral derivatization using reversed-phase high-performance liquid chromatography. J. Chromatogr. 1990, 527, 351–359. [Google Scholar] [CrossRef]
- Jain, P.; Taleuzzaman, M.; Kala, C.; Kumar, G.D.; Ali, A.; Aslam, M. Quality by design (Qbd) assisted development of phytosomal gel of aloe vera extract for topical delivery. J. Liposome Res. 2021, 31, 381–388. [Google Scholar] [CrossRef]
- Czyrski, A.; Sznura, J. The application of Box-Behnken-Design in the optimization of HPLC separation of fluoroquinolones. Sci. Rep. 2019, 19, 19458. [Google Scholar] [CrossRef] [Green Version]
- Kaur, J.; Anwer, M.K.; Sartaj, A.; Panda, B.P.; Ali, A.; Zafar, A.; Kumar, V.; Gilani, S.J.; Kala, C.; Taleuzzaman, M. ZnO Nanoparticles of Rubia cordifolia Extract Formulation Developed and Optimized with QbD Application, Considering Ex Vivo Skin Permeation, Antimicrobial and Antioxidant Properties. Molecules 2022, 27, 1450. [Google Scholar] [CrossRef]
- ICH Harmonization for Better Health, Final Concept Paper, ICH Q14: Analytical Procedure Development and Revision of Q2 (R1) Analytical Validation. (November 2018). Endorsed by the Management Committee on 15 November 2018. Available online: https://database.ich.org/sites/default/files/Q2R2-Q14_EWG_Concept_Paper.pdf (accessed on 19 October 2022).
- Parab, G.V.; Mannur, V.K.; Hullatti, K. Quality assessment and Analytical Quality by Design-based RP-HPLC method development for quantification of Piperine in Piper nigrum L. Futur. J. Pharm. Sci. 2022, 8, 16. [Google Scholar] [CrossRef]
- Ameeduzzafar; El-Bagory, I.K.; Alruwaili, N.; Imam, S.S.; Alomar, F.A.; Elkomy, M.H.; Ahmad, N.; Elmowafy, M. Quality by design (QbD) based development and validation of bioanalytical RP-HPLC method for dapagliflozin: Forced degradation and preclinical pharmacokinetic study. J. Liq. Chromatogr. Relat. Technol. 2020, 43, 53–65. [Google Scholar] [CrossRef]
- Prajapati, P.B.; Patel, A.S.; Shah, S.A. DoE-Based Analytical-FMCEA for Enhanced AQbD Approach to MEER-RP-HPLC Method for Synchronous Estimation of 15 Anti-Hypertensive Pharmaceutical Dosage Forms. J. AOAC Int. 2022, 105, 34–45. [Google Scholar] [CrossRef] [PubMed]
- Haque, S.M. Optimized Box-Behnken experimental design based response surface methodology and Youden’s robustness test to develop and validate methods to determine nateglinide using kinetic spectrophotometry. Spectrochim. Acta A Mol. Biomol. Spectrosc. 2022, 268, 120712. [Google Scholar] [CrossRef]
- ICH Guideline. Validation of Analytical Procedures: Text and Methodology. In Proceedings of the International Conference on Harmonization, Topic Q2 (R1), Geneva, Switzerland, Complementary Guideline on Methodology dated 6 November 1996 incorporated in November 2005. Available online: https://www.fda.gov/regulatory-information/search-fda-guidance-documents/q2r1-validation-analytical-procedures-text-and-methodology-guidance-industry (accessed on 19 October 2022).
- CDER. CDER. Analytical Procedures and Methods Validation for Drugs and Biologics Guidance for Industry; FDA: Silver Spring, MD, USA, 2015. [Google Scholar]
- Yadav, P.; Taleuzzaman, M.; Kumar, P. Simultaneous Estimation of Aspirin, Atorvastatin Calcium and Clopidogrel Bisulphate in a Combined Dosage form by RP-HPLC. Asian J. Chem. Sci. 2019, 6, 1–10. [Google Scholar] [CrossRef]
- Alquadeib, B.T. Development and validation of a new HPLC analytical method for the determination of diclofenac in tablets. Saudi Pharm. J. 2019, 27, 66–70. [Google Scholar] [CrossRef]
- Thangabalan, B.; Kahsay, G.; Eticha, T. Development and Validation of a High-Performance Liquid Chromatographic Method for the Determination of Cinitapride in Human Plasma. J. Anal. Methods Chem. 2018, 28, 8280762. [Google Scholar] [CrossRef] [PubMed]
- Naqvi, A.; Pandey, A.; Gupta, V.; Malasoni, R.; Srivastava, A.; Pandey, R.R.; Satyanarayana, M.; Pratap, R.; Dwivedi, A.K. Assay method for quality control and stability studies of a new anti-diabetic and anti-dyslipidemic flavone (S002-853). Pharmacogn. Mag. 2015, 11, S53–S59. [Google Scholar] [CrossRef] [Green Version]
- Bhimanadhuni, C.N.; Garikapati, D.R.; Usha, P. Development and validation of an RP-HPLC method for the simultaneous determination of Escitalopram Oxalate and Clonazepam in bulk and its pharmaceutical formulations. ICPJ 2012, 1, 193–198. [Google Scholar] [CrossRef] [Green Version]
- Verma, D.; Mirza, M.A.; Taleuzzaman, M.; Khuroo, T.; Talegaonkar, S.; Kumar, R.; Sahu, P.L.; Iqbal, Z. Development and validation of RP-HPLC method to simultaneously detect lactone and carboxylate form of Topotecan along with Thymoquinone: Application to nanoparticulate anticancer formulation system. J. Anal. Chem. 2020, 4, 503–509. [Google Scholar] [CrossRef]
- Tome, T.; Žigart, N.; Časar, Z.; Obreza, A. Development and Optimization of Liquid Chromatography Analytical Methods by Using AQbD Principles: Overview and Recent. Adv. Org. Process Res. Dev. 2019, 23, 1784–1802. [Google Scholar] [CrossRef] [Green Version]
- Al-Rimawi, F. Development and validation of a simple reversed-phase HPLC-UV method for determination of oleuropein in olive leaves. J. Food Drug Anal. 2014, 22, 285–289. [Google Scholar] [CrossRef] [PubMed]
- Rabie, S.; Ashraf, M.A. RP-HPLC determination of amitriptyline hydrochloride in tablet formulations and urine. Asian J. Res. Chem. 2011, 4, 24–27. [Google Scholar]
- Faraat, A.; Singha, G.N.; Sahua, P.; Nagarab, R.; Nagara, M.; Tyagi, A. Application of an LC/HPLC method development and validation for the simultaneous estimation of amitriptyline hydrochloride and chlordiazepoxide in tablet dosage form by using a reverse phase technique. Pharm Lett. 2015, 7, 172–177. [Google Scholar]
- Srikantha, D.; Raju, R. Method development and validation of chlordiazepoxide and amitriptyline hydrochloride inpharmaceutical formulations by RP-HPLC. Asian J. Biomed. Pharm. Sci. 2014, 4, 8–14. [Google Scholar]
- Karchaliya, C.V.; Patel, P.B. Development and validation of analytical methods for simultaneous estimation of amitriptyline hydrochloride and methylcobalamin in their tablet dosage form by UV spectrophotometric method. Pharma Tutor Mag. 2015, 3, 46–50. [Google Scholar]
S. No. | Factor A | Factor B | Factor C | Response 1 | Response 2 | Response 3 | Response 4 |
---|---|---|---|---|---|---|---|
1 | 73 | 0.8 | 257 | 5.204 | 9235 | 7.38 | 10,938 |
2 | 77 | 0.8 | 257 | 5.254 | 9739 | 7.28 | 10,938 |
3 | 73 | 1.2 | 257 | 5.304 | 9865 | 7.68 | 10,938 |
4 | 77 | 1.2 | 257 | 5.239 | 9435 | 7.56 | 10,938 |
5 | 73 | 1 | 254 | 5.342 | 9635 | 7.58 | 10,938 |
6 | 77 | 1 | 254 | 5.112 | 9615 | 7.69 | 10,938 |
7 | 73 | 1 | 260 | 5.106 | 9465 | 7.28 | 10,938 |
8 | 77 | 1 | 260 | 5.302 | 9635 | 7.48 | 10,938 |
9 | 75 | 0.8 | 254 | 5.271 | 9495 | 7.48 | 10,938 |
10 | 75 | 1.2 | 254 | 5.389 | 9735 | 7.48 | 10,938 |
11 | 75 | 0.8 | 260 | 5.305 | 9435 | 7.48 | 10,938 |
12 | 75 | 1.2 | 260 | 5.299 | 9605 | 7.58 | 10,938 |
13* | 75 | 1 | 257 | 5.324 | 9535 | 7.48 | 10,938 |
14* | 75 | 1 | 257 | 5.324 | 9535 | 7.48 | 10,938 |
15* | 75 | 1 | 257 | 5.324 | 9535 | 7.48 | 10,938 |
16* | 75 | 1 | 257 | 5.324 | 9535 | 7.48 | 10,938 |
17* | 75 | 1 | 257 | 5.324 | 9535 | 7.48 | 10,938 |
S. NO. | Parameters | AMPL | PROL |
---|---|---|---|
1. | Equation | Y = 2.186x − 0.441 | Y = 2.645x − 0.085 |
2. | Regression | 0.9997 | 0.9999 |
3. | Range (µg/mL) | 5–25 | 20–100 |
4. | Avg.SD | 0.34 | 0.97 |
5. | Avg. % RSD | 1.46 | 0.92 |
6. | LOD | 0.5132 | 2.2653 |
7. | LOQ | 1.5553 | 6.8648 |
8. | RT (min) | 5.324 | 7.48 |
AMPL | PROL | |||
---|---|---|---|---|
Retention Time | Theoretical Plate Value | Retention Time | Theoretical Plate Value | |
Source | Quadratic | Quadratic | Quadratic | Quadratic |
Std.dev. | 0.0046 | 16.05 | 0.0144 | 42.27 |
R2 | 0.9984 | 0.9945 | 0.9947 | 0.9955 |
Adjusted R2 | 0.9964 | 0.9873 | 0.9880 | 0.9896 |
Predicted R2 | 0.9747 | 0.9112 | 0.9157 | 0.9273 |
Sequential p-value | <0.0001 | 0.0100 | 0.0137 | 0.0240 |
Precision | |||||||||
---|---|---|---|---|---|---|---|---|---|
AMPL | PROL | ||||||||
QC Sample | Intraday | Interday | Intraday | Interday | |||||
SD | %RSD | SD | %RSD | SD | %RSD | SD | %RSD | ||
LQC (05 µg/mL) | 0.96 | 0.23 | 5.65 | 0.64 | LQC (20 µg/mL) | 0.96 | 0.23 | 5.65 | 0.64 |
MQC (15 µg/mL) | 0.11 | 0.34 | 0.28 | 0.02 | MQC (50 µg/mL) | 0.81 | 0.49 | 2.73 | 0.02 |
HQC (25 µg/mL) | 0.15 | 0.37 | 0.14 | 0.16 | HQC (80 µg/mL) | 0.17 | 0.08 | 0.17 | 0.16 |
Accuracy | |||||||||
% Excess Drug Added | AMPL | PROL | |||||||
Avg.% Recovered | SD | %RSD | Avg.% Recovered | SD | %RSD | ||||
80% | 100.33 | 0.27 | 0.26 | 100.66 | 1.15 | 1.14 | |||
100% | 99.80 | 0.07 | 0.07 | 100.52 | 0.32 | 0.32 | |||
120% | 99.67 | 0.18 | 0.18 | 99.36 | 0.66 | 0.66 |
AMPL | PROL | |||||
---|---|---|---|---|---|---|
Mean Area | SD | %RSD | Mean Area | SD | %RSD | |
Flow rate at 0.9 mL min−1 | 84.55 | 0.45 | 0.54 | 425.97 | 0.36 | 0.08 |
Flow rate at 1.1 mL min−1 | 86.91 | 0.30 | 0.35 | 450.79 | 1.13 | 0.25 |
MEOH (74%) + OPA (26%) | 83.5 | 0.58 | 0.69 | 447.4 | 1.28 | 0.29 |
MEOH (76%) + OPA (24%) | 84.50 | 0.49 | 0.59 | 453.13 | 0.64 | 0.14 |
Wavelength 256 nm | 87.3 | 0.08 | 0.09 | 393.9 | 5.15 | 1.31 |
Wavelength 258 nm | 87.44 | 0.81 | 0.92 | 391.96 | 0.39 | 0.10 |
AMPL | PROL | |||||||
---|---|---|---|---|---|---|---|---|
Degradation | Area of Standard | Area of Degraded Sample | Degraded up to % | Actual % Degradation | Area of Standard | Area of Degraded Sample | Degraded up to % | Actual % Degradation |
Acid degradation | 54.02 | 45.34 | 83.93 | 16.07 | 264.43 | 222.53 | 84.16 | 15.84 |
Basic degradation | 54.02 | 20.57 | 38.08 | 61.92 | 264.43 | 233.95 | 88.48 | 11.52 |
H2O2 degradation | 54.02 | 39.44 | 73.02 | 26.98 | 264.43 | 240.38 | 90.91 | 9.09 |
Neutral degradation | 54.02 | 53.67 | 99.36 | 0.64 | 264.43 | 254.86 | 96.38 | 3.62 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Khalid, M.; Ahmad, S. Box–Behnken Design Used to Optimize the Simultaneous Quantification of Amitriptyline and Propranolol in Tablet Dosages by RP-HPLC-DAD Method and Their Stability Tests. Separations 2022, 9, 421. https://doi.org/10.3390/separations9120421
Khalid M, Ahmad S. Box–Behnken Design Used to Optimize the Simultaneous Quantification of Amitriptyline and Propranolol in Tablet Dosages by RP-HPLC-DAD Method and Their Stability Tests. Separations. 2022; 9(12):421. https://doi.org/10.3390/separations9120421
Chicago/Turabian StyleKhalid, Mohammad, and Sarfaraz Ahmad. 2022. "Box–Behnken Design Used to Optimize the Simultaneous Quantification of Amitriptyline and Propranolol in Tablet Dosages by RP-HPLC-DAD Method and Their Stability Tests" Separations 9, no. 12: 421. https://doi.org/10.3390/separations9120421
APA StyleKhalid, M., & Ahmad, S. (2022). Box–Behnken Design Used to Optimize the Simultaneous Quantification of Amitriptyline and Propranolol in Tablet Dosages by RP-HPLC-DAD Method and Their Stability Tests. Separations, 9(12), 421. https://doi.org/10.3390/separations9120421