Polymer-Based Nano-Adsorbent for the Removal of Lead Ions: Kinetics Studies and Optimization by Response Surface Methodology
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Making Nanoadsorbents out of PPy and PPy-PEI
2.3. Characterization of Polypyrrole and Polyethleneimine Nano Adsorbents
2.4. Response Surface Methodology (RSM)
2.5. Batch Sorption Tests
2.6. Determination of Adsorption Isotherms
2.7. Regeneration and Repeatability Test
3. Results and Discussion
3.1. FTIR Spectra
3.2. Surface Area Analysis (BET)
3.3. Thermo Gravimetric Analysis (TGA)
3.4. The Study of X-ray Diffraction (XRD)
3.5. Energy-Dispersive X-ray Analysis
3.6. Morphology
3.7. Effects of Interactive Variables during Parameters Optimization by Response Surface Methodology (RSM)
3.8. ANOVA
3.9. D Surface Plots
3.10. Normal and Predicted Plots
3.11. Isotherms of Adsorption
3.12. Kinetics of Adsorption
3.13. Adsorption Thermodynamics on Lead Ions
3.14. Regeneration and Repeatability Studies
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Hosseinzadeh, H.; Ramin, S. Fast and enhanced removal of mercury from aqueous solutions by magnetic starch-g-poly (acryl amide)/graphene oxide nanocomposite superabsorbents. Polym. Sci. Ser. B 2016, 58, 457–473. [Google Scholar] [CrossRef]
- Gadiri, A.; Benkhaled, A.; Choukchou-Braham, E. Equilibrium, kinetic and thermodynamic studies of copper adsorption onto poly (n-vinylpyrrolidone) modified clay. J. Macromol. Sci. Part A 2018, 55, 393–400. [Google Scholar] [CrossRef]
- Rezania, H.; Vatanpour, V.; Salehi, E.; Gavari, N.; Shockravi, A.; Ehsani, M. Wholly heterocycles-based polyamide–sulfide containing pyridine and thiazole rings: A super-adsorbent polymer for lead removal. J. Polym. Environ. 2019, 27, 1790–1800. [Google Scholar] [CrossRef]
- Chen, Z.; Zhang, S.; Liu, Y.; Alharbi, N.S.; Rabah, S.O.; Wang, S.; Wang, X. Synthesis and fabrication of g-C3N4-based materials and their application in elimination of pollutants. Sci. Total Environ. 2020, 731, 139054. [Google Scholar] [CrossRef] [PubMed]
- Jagaba, A.H.; Kutty, S.R.M.; Hayder, G.; Baloo, L.; Noor, A.; Yaro, N.S.A.; Saeed, A.A.H.; Lawal, I.M.; Birniwa, A.H.; Usman, A.K. A systematic literature review on waste-to-resource potential of palm oil clinker for sustainable engineering and environmental applications. Materials 2021, 14, 4456. [Google Scholar] [CrossRef]
- Mahvi, A.H.; Balarak, D.; Bazrafshan, E. Remarkable reusability of magnetic Fe3O4-graphene oxide composite: A highly effective adsorbent for Cr (VI) ions. Int. J. Environ. Anal. Chem. 2021, 1–21. [Google Scholar] [CrossRef]
- Bazrafshan, E.; Sobhanikia, M.; Mostafapour, F.K.; Kamani, H.; Balarak, D. Chromium biosorption from aqueous environments by mucilaginous seeds of Cydonia oblonga: Thermodynamic, equilibrium and kinetic studies. Glob. NEST J. 2017, 19, 269–277. [Google Scholar]
- Balarak, D.; Azarpira, H. Isotherms and thermodynamics of Cd (II) ion removal by adsorption onto Azolla filiculoides. Int. J. Pharm. Technol. 2016, 8, 15780–15788. [Google Scholar]
- Jagaba, A.H.; Kutty, S.; Khaw, S.; Lai, C.; Isa, M.; Baloo, L.; Lawal, I.; Abubakar, S.; Umaru, I.; Zango, Z. Derived hybrid biosorbent for zinc (II) removal from aqueous solution by continuous-flow activated sludge system. J. Water Process Eng. 2020, 34, 101152. [Google Scholar] [CrossRef]
- Jagaba, A.H.; Kutty, S.R.M.; Noor, A.; Birniwa, A.H.; Affam, A.C.; Lawal, I.M.; Kankia, M.U.; Kilaco, A.U. A systematic literature review of biocarriers: Central elements for biofilm formation, organic and nutrients removal in sequencing batch biofilm reactor. J. Water Process Eng. 2021, 42, 102178. [Google Scholar] [CrossRef]
- Balarak, D.; Azarpira, H.; Mostafapour, F.K. Thermodynamics of removal of cadmium by adsorption on Barley husk biomass. Der Pharma Chem. 2016, 8, 243–247. [Google Scholar]
- Azarpira, H.; Mahdavi, Y.; Balarak, D. Removal of Cd (II) by adsorption on agricultural waste biomass. Der Pharma Chem. 2016, 8, 61–67. [Google Scholar]
- Jagaba, A.; Kutty, S.; Hayder, G.; Baloo, L.; Ghaleb, A.; Lawal, I.; Abubakar, S.; Al-dhawi, B.; Almahbashi, N.; Umaru, I. Degradation of Cd, Cu, Fe, Mn, Pb and Zn by Moringa-oleifera, zeolite, ferric-chloride, chitosan and alum in an industrial effluent. Ain Shams Eng. J. 2021, 12, 57–64. [Google Scholar] [CrossRef]
- Jagaba, A.H.; Kutty, S.R.M.; Lawal, I.M.; Aminu, N.; Noor, A.; Al-dhawi, B.N.S.; Usman, A.K.; Batari, A.; Abubakar, S.; Birniwa, A.H.; et al. Diverse sustainable materials for the treatment of petroleum sludge and remediation of contaminated sites: A review. Clean. Waste Syst. 2022, 2, 100010. [Google Scholar] [CrossRef]
- Birniwa, A.H.; Abubakar, A.S.; Mahmud, H.N.M.E.; Kutty, S.R.M.; Jagaba, A.H.; Abdullahi, S.S.a.; Zango, Z.U. Application of Agricultural Wastes for Cationic Dyes Removal from Wastewater. In Textile Wastewater Treatment; Muthu, S.S., Khadir, A., Eds.; Springer: Singapore, 2022; pp. 239–274. [Google Scholar]
- Abdullahi, S.S.; Musa, H.; Habibu, S.; Mohammad, R.E.A. Facile synthesis and dyeing performance of some disperse monomeric and polymeric dyes on nylon and polyester fabrics. Bull. Chem. Soc. Ethiop. 2021, 35, 485–497. [Google Scholar] [CrossRef]
- Ansari, R.; Mosayebzadeh, Z.J.C.P. Application of polyaniline as an efficient and novel adsorbent for azo dyes removal from textile wastewaters. Chem. Pap. 2011, 65, 1–8. [Google Scholar] [CrossRef]
- Mehdinia, A.; Niroumand, R.; Jabbari, A. Removal of lead and copper ions from environmental water samples by nanorattle magnetic polypyrrole. Int. J. Environ. Sci. Technol. 2020, 17, 2721–2730. [Google Scholar] [CrossRef]
- Birniwa, A.H.; Mahmud, H.N.M.E.; Abdullahi, S.S.; Habibu, S.; Jagaba, A.H.; Ibrahim, M.N.M.; Ahmad, A.; Alshammari, M.B.; Parveen, T.; Umar, K. Adsorption Behavior of Methylene Blue Cationic Dye in Aqueous Solution Using Polypyrrole-Polyethylenimine Nano-Adsorbent. Polymers 2022, 14, 3362. [Google Scholar] [CrossRef]
- Katal, R.; Ghiass, M.; Esfandian, H. Application of nanometer size of polypyrrole as a suitable adsorbent for removal of Cr (VI). J. Vinyl Addit. Technol. 2011, 17, 222–230. [Google Scholar] [CrossRef]
- Olatunji, M.A.; Khandaker, M.U.; Mahmud, H.N.M.E. Adsorption kinetics, equilibrium and radiation effect studies of radioactive cesium by polymer-based adsorbent. J. Vinyl Addit. Technol. 2018, 24, 347–357. [Google Scholar] [CrossRef]
- Sekar, M.; Sakthi, V.; Rengaraj, S. Kinetics and equilibrium adsorption study of lead (II) onto activated carbon prepared from coconut shell. J. Colloid Interface Sci. 2004, 279, 307–313. [Google Scholar] [CrossRef] [PubMed]
- Huq, A.K.O.; Yahya, R.; Mahmud, H.N.M.E. Equilibrium, kinetics, and thermodynamics studies of polypyrrole adsorbent for arsenic ions. Water Supply 2018, 18, 240–250. [Google Scholar] [CrossRef]
- Birniwa, A.H.; Abubakar, A.S.; Huq, A.K.O. Polypyrrole-polyethyleneimine (PPy-PEI) nanocomposite: An effective adsorbent for nickel ion adsorption from aqueous solution. J. Macromol. Sci. Part A 2021, 58, 206–217. [Google Scholar] [CrossRef]
- Gouthaman, A.; Azuradeen, R.S.; Gnanaprakasam, A.; Sivakumar, V.M.; Thirumarimurugan, M. Polymeric nanocomposites for the removal of Acid red 52 dye from aqueous solutions: Synthesis, characterization, kinetic and isotherm studies. Ecotoxicol. Environ. Saf. 2018, 160, 42–51. [Google Scholar] [CrossRef] [PubMed]
- Zare, E.N.; Motahari, A.; Sillanpää, M. Nanoadsorbents based on conducting polymer nanocomposites with main focus on polyaniline and its derivatives for removal of heavy metal ions/dyes: A review. Environ. Res. 2018, 162, 173–195. [Google Scholar] [CrossRef]
- Jagaba, A.H.; Kutty, S.R.M.; Baloo, L.; Birniwa, A.H.; Lawal, I.M.; Aliyu, M.K.; Yaro, N.S.A.; Usman, A.K. Combined treatment of domestic and pulp and paper industry wastewater in a rice straw embedded activated sludge bioreactor to achieve sustainable development goals. Case Stud. Chem. Environ. Eng. 2022, 6, 100261. [Google Scholar] [CrossRef]
- Hasani, T.; Eisazadeh, H. Removal of Cd (II) by using polypyrrole and its nanocomposites. Synth. Met. 2013, 175, 15–20. [Google Scholar] [CrossRef]
- Ghorbani, M.; Eisazadeh, H. Removal of COD, color, anions and heavy metals from cotton textile wastewater by using polyaniline and polypyrrole nanocomposites coated on rice husk ash. Compos. Part B Eng. 2013, 45, 1–7. [Google Scholar] [CrossRef]
- Zhao, Y.; Liang, T.; Miao, P.; Chen, T.; Han, X.; Hu, G.; Gao, J. Green Preparation of Aminated Magnetic PMMA Microspheres via EB Irradiation and Its Highly Efficient Uptake of Ce (III). Materials 2022, 15, 6553. [Google Scholar] [CrossRef]
- Ghaleb, A.; Kutty, S.; Ho, Y.; Jagaba, A.; Noor, A.; Al-Sabaeei, A.; Kumar, V.; Saeed, A. Anaerobic Co-Digestion for Oily-Biological Sludge with Sugarcane Bagasse for Biogas Production under Mesophilic Condition; IOP Conference Series: Materials Science and Engineering; IOP Publishing: Bristol, UK, 2020; p. 012084. [Google Scholar]
- Dandil, S.; Sahbaz, D.A.; Acikgoz, C. Adsorption of Cu (II) ions onto crosslinked chitosan/Waste Active Sludge Char (WASC) beads: Kinetic, equilibrium, and thermodynamic study. Int. J. Biol. Macromol. 2019, 136, 668–675. [Google Scholar] [CrossRef] [PubMed]
- Lawal, I.M.; Bertram, D.; White, C.J.; Jagaba, A.H.; Hassan, I.; Shuaibu, A. Multi-criteria performance evaluation of gridded precipitation and temperature products in data-sparse regions. Atmosphere 2021, 12, 1597. [Google Scholar] [CrossRef]
- Hosseini, S.; Mahmud, N.H.M.E.; Yahya, R.B.; Ibrahim, F.; Djordjevic, I. Polypyrrole conducting polymer and its application in removal of copper ions from aqueous solution. Mater. Lett. 2015, 149, 77–80. [Google Scholar] [CrossRef]
- Markandeya; Dhiman, N.; Shukla, S.P.; Kisku, G.C. Statistical optimization of process parameters for removal of dyes from wastewater on chitosan cenospheres nanocomposite using response surface methodology. J. Clean. Prod. 2017, 149, 597–606. [Google Scholar] [CrossRef]
- Witek-Krowiak, A.; Chojnacka, K.; Podstawczyk, D.; Dawiec, A.; Pokomeda, K. Application of response surface methodology and artificial neural network methods in modelling and optimization of biosorption process. Bioresour. Technol. 2014, 160, 150–160. [Google Scholar] [CrossRef] [PubMed]
- Kong, D.; Qiao, N.; Wang, N.; Wang, Z.; Wang, Q.; Zhou, Z.; Ren, Z. Facile preparation of a nano-imprinted polymer on magnetite nanoparticles for the rapid separation of lead ions from aqueous solution. Phys. Chem. Chem. Phys. 2018, 20, 12870–12878. [Google Scholar] [CrossRef] [PubMed]
- Koushkbaghi, S.; Zakialamdari, A.; Pishnamazi, M.; Ramandi, H.F.; Aliabadi, M.; Irani, M. Aminated-Fe3O4 nanoparticles filled chitosan/PVA/PES dual layers nanofibrous membrane for the removal of Cr (VI) and Pb (II) ions from aqueous solutions in adsorption and membrane processes. Chem. Eng. J. 2018, 337, 169–182. [Google Scholar] [CrossRef]
- Liu, Y.; Liu, Z.; Gao, J.; Dai, J.; Han, J.; Wang, Y.; Xie, J.; Yan, Y. Selective adsorption behavior of Pb (II) by mesoporous silica SBA-15-supported Pb (II)-imprinted polymer based on surface molecularly imprinting technique. J. Hazard. Mater. 2011, 186, 197–205. [Google Scholar] [CrossRef]
- Moradi, G.; Dabirian, F.; Mohammadi, P.; Rajabi, L.; Babaei, M.; Shiri, N. Electrospun fumarate ferroxane/polyacrylonitrile nanocomposite nanofibers adsorbent for lead removal from aqueous solution: Characterization and process optimization by response surface methodology. Chem. Eng. Res. Des. 2018, 129, 182–196. [Google Scholar] [CrossRef]
- Jagaba, A.H.; Kutty, S.R.M.; Noor, A.; Isah, A.S.; Lawal, I.M.; Birniwa, A.H.; Usman, A.K.; Abubakar, S. Kinetics of Pulp and Paper Wastewater Treatment by High Sludge Retention Time Activated Sludge Process. J. Hunan Univ. Nat. Sci. 2022, 49. [Google Scholar] [CrossRef]
- Jagaba, A.H.; Kutty, S.R.M.; Noor, A.; Affam, A.C.; Ghfar, A.A.; Usman, A.K.; Lawal, I.M.; Birniwa, A.H.; Kankia, M.U.; Afolabi, H.K. Parametric optimization and kinetic modelling for organic matter removal from agro-waste derived paper packaging biorefinery wastewater. Biomass Convers. Biorefinery 2022, 1–18. [Google Scholar] [CrossRef]
- Jagaba, A.H.; Kutty, S.R.M.; Naushad, M.; Lawal, I.M.; Noor, A.; Affam, A.C.; Birniwa, A.H.; Abubakar, S.; Soja, U.B.; Abioye, K.J. Removal of nutrients from pulp and paper biorefinery effluent: Operation, kinetic modelling and optimization by response surface methodology. Environ. Res. 2022, 214, 114091. [Google Scholar] [CrossRef] [PubMed]
- Jagaba, A.H.; Kutty, S.R.M.; Abubakar, S.; Birniwa, A.H.; Lawal, I.M.; Umaru, I.; Usman, A.K.; Yaro, N.S.A.; Al-Zaqri, N.; Al-Maswari, B.M. Synthesis, Characterization, and Performance Evaluation of Hybrid Waste Sludge Biochar for COD and Color Removal from Agro-Industrial Effluent. Separations 2022, 9, 258. [Google Scholar] [CrossRef]
- Birniwa, A.J.; Mohammad, R.E.A.; Ali, M.; Rehman, M.F.; Abdullahi, S.S.; Eldin, S.M.; Mamman, S.; Sadiq, A.C.; Jagaba, A.H. Synthesis of Gum Arabic Magnetic Nanoparticles for Adsorptive Removal of Ciprofloxacin: Equilibrium, Kinetic, Thermodynamics Studies, and Optimization by Response Surface Methodology. Separations 2022, 10, 322. [Google Scholar] [CrossRef]
- Jagaba, A.H.; Kutty, S.R.M.; Isa, M.H.; Ghaleb, A.A.S.; Lawal, I.M.; Usman, A.K.; Birniwa, A.H.; Noor, A.; Abubakar, S.; Umaru, I.; et al. Toxic Effects of Xenobiotic Compounds on the Microbial Community of Activated Sludge. ChemBioEng Rev. 2022, 9, 1–40. [Google Scholar] [CrossRef]
- Abdullahi, S.S.; Musa, H.; Habibu, S.; Birniwa, A.H.; Mohammad, R.E.A. Comparative study and dyeing performance of as-synthesized azo heterocyclic monomeric, polymeric, and commercial disperse dyes. Turk. J. Chem. 2022, 46, 1–12. [Google Scholar]
- Jagabaa, A.H.; Kutty, S.R.M.; Lawal, I.M.; Birniwa, A.H.; Affam, A.C.; Yaro, N.S.A.; Usman, A.K.; Umaru, I.; Abubakar, S.; Noor, A. Circular economy potential and contributions of petroleum industry sludge utilization to environmental sustainability through engineered processes—A review. Clean. Circ. Bioecon. 2022, 3, 100029. [Google Scholar]
- Jagaba, A.H.; Kutty, S.R.M.; Baloo, L.; Noor, A.; Abubakar, S.; Lawal, I.M.; Umaru, I.; Usman, A.K.; Kumar, V.; Birniwa, A.H. Effect of hydraulic retention time on the treatment of pulp and paper industry wastewater by extended aeration activated sludge system. In Proceedings of the 2021 Third International Sustainability and Resilience Conference: Climate Change, Sakheer, Bahrain, 15–16 November 2021; IEEE: Piscataway, NJ, USA, 2021; pp. 221–224. [Google Scholar]
- Birniwa, A.; Abdullahi, S. Study on physico-mechanical behaviour of acacia nilotica (gum tree) and glass fiber blend reinforced epoxy resin composite. ChemSearch J. 2019, 10, 46–53. [Google Scholar]
- Abdullahi, S.S.; Abu Bakar, N.H.H.; Iqbal, A.; Yusof, N.H. Facile Synthesis and Properties of Cu-Based Supported Halloysite Nanotube (HNT) Photocatalysts for Photocatalytic Degradation of Liquid Epoxidized Natural Rubber (LENR). Egypt. J. Chem. 2022, 65, 702–715. [Google Scholar]
- Jagaba, A.; Kutty, S.; Fauzi, M.; Razali, M.; Hafiz, M.; Noor, A. Organic and Nutrient Removal from Pulp and Paper Industry Wastewater by Extended Aeration Activated Sludge System; IOP Conference Series: Earth and Environmental Science; IOP Publishing: Bristol, UK, 2021; p. 012021. [Google Scholar]
- Tsang, Y.F.; Chua, H.; Sin, S.; Tam, C. A novel technology for bulking control in biological wastewater treatment plant for pulp and paper making industry. Biochem. Eng. J. 2006, 32, 127–134. [Google Scholar] [CrossRef]
- Kankia, M.U.; Baloo, L.; Danlami, N.; Mohammed, B.S.; Haruna, S.; Abubakar, M.; Jagaba, A.H.; Sayed, K.; Abdulkadir, I.; Salihi, I.U. Performance of Fly Ash-Based Inorganic Polymer Mortar with Petroleum Sludge Ash. Polymers 2021, 13, 4143. [Google Scholar] [CrossRef] [PubMed]
- Baloo, L.; Isa, M.H.; Sapari, N.B.; Jagaba, A.H.; Wei, L.J.; Yavari, S.; Razali, R.; Vasu, R. Adsorptive removal of methylene blue and acid orange 10 dyes from aqueous solutions using oil palm wastes-derived activated carbons. Alex. Eng. J. 2021, 60, 5611–5629. [Google Scholar] [CrossRef]
- Al-Mahbashi, N.M.Y.; Kutty, S.R.M.; Bilad, M.R.; Huda, N.; Kobun, R.; Noor, A.; Jagaba, A.H.; Al-Nini, A.; Ghaleb, A.A.S.; Al-dhawi, B.N.S. Bench-Scale Fixed-Bed Column Study for the Removal of Dye-Contaminated Effluent Using Sewage-Sludge-Based Biochar. Sustainability 2022, 14, 6484. [Google Scholar] [CrossRef]
- Brink, A.; Sheridan, C.; Harding, K. A kinetic study of a mesophilic aerobic moving bed biofilm reactor (MBBR) treating paper and pulp mill effluents: The impact of phenols on biodegradation rates. J. Water Process Eng. 2017, 19, 35–41. [Google Scholar] [CrossRef]
- Hooshyari, B.; Azimi, A.; Mehrdadi, N. Kinetic analysis of enhanced biological phosphorus removal in a hybrid integrated fixed film activated sludge process. Int. J. Environ. Sci. Technol. 2009, 6, 149–158. [Google Scholar] [CrossRef] [Green Version]
- Liang, J.; Mai, W.; Tang, J.; Wei, Y. Highly effective treatment of petrochemical wastewater by a super-sized industrial scale plant with expanded granular sludge bed bioreactor and aerobic activated sludge. Chem. Eng. J. 2019, 360, 15–23. [Google Scholar] [CrossRef]
- Sharma, P.; Iqbal, H.M.; Chandra, R. Evaluation of pollution parameters and toxic elements in wastewater of pulp and paper industries in India: A case study. Case Stud. Chem. Environ. Eng. 2022, 5, 100163. [Google Scholar] [CrossRef]
- Mohammad, R.E.A.; Gubartallah, E.A.; Elbashir, A.A.; Saad, B.; Yahaya, N.; Zain, N.N.M.; Rahim, N.Y.; Miskam, M. Simultaneous Determination of Nonsteroidal Anti-Inflammatory Drugs Using Vortex-Assisted Liquid-Liquid Microextraction with Back Extraction Coupled with HPLC-UV. Chiang Mai J. Sci. 2021, 48, 1363–1373. [Google Scholar]
- Aigbe, U.O.; Das, R.; Ho, W.H.; Srinivasu, V.; Maity, A. A novel method for removal of Cr (VI) using polypyrrole magnetic nanocomposite in the presence of unsteady magnetic fields. Sep. Purif. Technol. 2018, 194, 377–387. [Google Scholar] [CrossRef]
- Mohammad, R.E.A.; Elbashir, A.A.; Karim, J.; Yahaya, N.; Rahim, N.Y.; Miskam, M. Adsorptive performances of magnetic graphene oxide adsorbent for the removal of fluoroquinolones in the Langat River Basin, Malaysia. Int. J. Environ. Anal. Chem. 2021, 2021, 1–20. [Google Scholar] [CrossRef]
Independent Variables | Symbol | Ranges and Codes | ||||
---|---|---|---|---|---|---|
J | −α | Low | Centre | High | +α | |
Initial Pb conc. (ppm) | ja | 1.5 | 3.0 | 4.5 | 6.0 | 7.5 |
PPy-PEI dose (g) | jb | 0.1 | 0.2 | 0.3 | 0.4 | 0.5 |
Contact time (min) | jc | 15 | 30 | 45 | 60 | 75 |
pH | jd | 2 | 4 | 6 | 8 | 10 |
Temp. (°C) | je | 20 | 30 | 40 | 50 | 60 |
Factors | Contaminant Removal | |||||
---|---|---|---|---|---|---|
Run | Initial Pb conc. (ppm) | PPy-PEI Dose (g) | Contact Time (min) | pH | Temp. (°C) | Pb Removal (%) |
1 | 4.5 | 0.3 | 45 | 8 | 60 | 82.24 |
2 | 4.5 | 0.3 | 75 | 8 | 40 | 81.51 |
3 | 6 | 0.2 | 30 | 6 | 50 | 82.73 |
4 | 3 | 0.2 | 60 | 6 | 50 | 83.94 |
5 | 3 | 0.2 | 60 | 6 | 30 | 84.03 |
6 | 4.5 | 0.3 | 15 | 8 | 40 | 84.17 |
7 | 3 | 0.4 | 60 | 6 | 30 | 83.18 |
8 | 3 | 0.2 | 30 | 10 | 30 | 83.41 |
9 | 3 | 0.4 | 60 | 6 | 50 | 72.42 |
10 | 3 | 0.2 | 30 | 6 | 50 | 71.65 |
11 | 1.5 | 0.3 | 45 | 8 | 40 | 83.29 |
12 | 6 | 0.4 | 60 | 10 | 50 | 87.74 |
13 | 6 | 0.4 | 60 | 6 | 30 | 86.71 |
14 | 6 | 0.2 | 30 | 10 | 30 | 87.83 |
15 | 4.5 | 0.3 | 45 | 8 | 40 | 88.54 |
16 | 3 | 0.4 | 60 | 10 | 50 | 86.93 |
17 | 4.5 | 0.3 | 45 | 8 | 20 | 86.67 |
18 | 4.5 | 0.3 | 45 | 12 | 40 | 86.48 |
19 | 3 | 0.4 | 30 | 10 | 30 | 86.64 |
20 | 3 | 0.2 | 30 | 6 | 30 | 73.92 |
21 | 7.5 | 0.3 | 45 | 8 | 40 | 73.15 |
22 | 4.5 | 0.3 | 45 | 8 | 40 | 88.79 |
23 | 3 | 0.4 | 30 | 6 | 30 | 88.84 |
24 | 4.5 | 0.3 | 45 | 8 | 40 | 87.11 |
25 | 3 | 0.2 | 60 | 10 | 50 | 88.33 |
26 | 3 | 0.2 | 30 | 10 | 50 | 89.64 |
27 | 6 | 0.4 | 60 | 10 | 30 | 88.03 |
28 | 6 | 0.2 | 30 | 10 | 50 | 87.17 |
29 | 4.5 | 0.3 | 45 | 4 | 40 | 86.88 |
30 | 3 | 0.4 | 30 | 10 | 50 | 86.74 |
31 | 6 | 0.4 | 60 | 6 | 50 | 75.22 |
32 | 6 | 0.4 | 30 | 10 | 50 | 74.65 |
33 | 4.5 | 0.3 | 45 | 8 | 40 | 87.89 |
34 | 6 | 0.4 | 30 | 6 | 30 | 87.14 |
35 | 3 | 0.2 | 60 | 10 | 30 | 86.41 |
36 | 4.5 | 0.3 | 45 | 8 | 40 | 86.63 |
37 | 4.5 | 0.5 | 45 | 8 | 40 | 87.94 |
38 | 6 | 0.2 | 30 | 6 | 30 | 86.33 |
39 | 6 | 0.4 | 30 | 10 | 30 | 87.87 |
40 | 4.5 | 0.3 | 45 | 8 | 40 | 86.89 |
41 | 4.5 | 0.3 | 45 | 8 | 40 | 86.54 |
42 | 6 | 0.2 | 60 | 6 | 50 | 73.02 |
43 | 3 | 0.4 | 30 | 6 | 50 | 72.55 |
44 | 4.5 | 0.3 | 45 | 8 | 40 | 81.19 |
45 | 6 | 0.2 | 60 | 6 | 30 | 81.54 |
46 | 3 | 0.4 | 60 | 10 | 30 | 80.81 |
47 | 6 | 0.2 | 60 | 10 | 50 | 82.03 |
48 | 6 | 0.4 | 30 | 6 | 50 | 82.34 |
49 | 6 | 0.2 | 60 | 10 | 30 | 84.31 |
50 | 4.5 | 0.1 | 45 | 8 | 40 | 83.87 |
Source | Sum of Squares | df | Mean Square | F-Value | p-Value | |
---|---|---|---|---|---|---|
Model | 763.01 | 20 | 38.15 | 2.13 | 0.0311 | significant |
A-Initial Pb conc. | 0.1824 | 1 | 0.1824 | 0.0102 | 0.9204 | |
B-PPy-PEI dose | 34.95 | 1 | 34.95 | 1.95 | 0.1732 | |
C-Contact time | 8.01 | 1 | 8.01 | 0.4467 | 0.5092 | |
D-pH | 14.69 | 1 | 14.69 | 0.8196 | 0.3728 | |
E-Temp. | 6.90 | 1 | 6.90 | 0.3851 | 0.5397 | |
AB | 25.87 | 1 | 25.87 | 1.44 | 0.2394 | |
AC | 30.95 | 1 | 30.95 | 1.73 | 0.1992 | |
AD | 45.53 | 1 | 45.53 | 2.54 | 0.1218 | |
AE | 18.53 | 1 | 18.53 | 1.03 | 0.3177 | |
BC | 1.00 | 1 | 1.00 | 0.0560 | 0.8145 | |
BD | 110.15 | 1 | 110.15 | 6.14 | 0.0192 | |
BE | 3.03 | 1 | 3.03 | 0.1691 | 0.6839 | |
CD | 62.52 | 1 | 62.52 | 3.49 | 0.0720 | |
CE | 139.82 | 1 | 139.82 | 7.80 | 0.0092 | |
DE | 15.72 | 1 | 15.72 | 0.8771 | 0.3567 | |
A2 | 6.54 | 1 | 6.54 | 0.3648 | 0.5506 | |
B2 | 133.83 | 1 | 133.83 | 7.47 | 0.0106 | |
C2 | 7.83 | 1 | 7.83 | 0.4367 | 0.5139 | |
D2 | 3.47 | 1 | 3.47 | 0.1934 | 0.6633 | |
E2 | 15.45 | 1 | 15.45 | 0.8617 | 0.3609 | |
Residual | 519.85 | 29 | 17.93 | |||
Lack of Fit | 731.73 | 22 | 33.26 | 1.44 | 0.3241 | not significant |
Pure Error | 161.76 | 7 | 23.11 | |||
Cor Total | 1562.08 | 49 |
Model Comparison Statistics | Fit Statistics | ||
---|---|---|---|
PRESS | 1894.07 | Std. Dev. | 4.34 |
−2 Log Likelihood | 261.48 | Mean | 83.68 |
BIC | 343.64 | C.V.% | 5.19 |
AICc | 343.48 | R2 | 0.5739 |
Adjusted R2 | 0.2800 | ||
Predicted R2 | −0.4764 | ||
Adeq Precision | 5.2930 |
Coefficient Estimate | df | Standard Error | 95% Pb Low | 95% Pb High | VIF | |
---|---|---|---|---|---|---|
Intercept | 86.68 | 1 | 1.50 | 83.61 | 89.76 | |
A-Initial Pb conc. | −0.1265 | 1 | 0.6865 | −1.53 | 1.28 | 1.0000 |
B-PPy-PEI dose | 0.2415 | 1 | 0.6865 | −1.16 | 1.65 | 1.0000 |
C-Contact time | −0.2530 | 1 | 0.6865 | −1.66 | 1.15 | 1.0000 |
D-pH | 2.05 | 1 | 0.6865 | 0.6505 | 3.46 | 1.0000 |
E-Temp. | −1.72 | 1 | 0.6865 | −3.12 | −0.3150 | 1.0000 |
AB | 0.2487 | 1 | 0.7675 | −1.32 | 1.82 | 1.0000 |
AC | −0.9413 | 1 | 0.7675 | −2.51 | 0.6285 | 1.0000 |
AD | −1.06 | 1 | 0.7675 | −2.63 | 0.5141 | 1.0000 |
AE | −0.9319 | 1 | 0.7675 | −2.50 | 0.6379 | 1.0000 |
BC | −0.2081 | 1 | 0.7675 | −1.78 | 1.36 | 1.0000 |
BD | −0.6550 | 1 | 0.7675 | −2.22 | 0.9147 | 1.0000 |
BE | −1.29 | 1 | 0.7675 | −2.86 | 0.2772 | 1.0000 |
CD | 0.1900 | 1 | 0.7675 | −1.38 | 1.76 | 1.0000 |
CE | 0.2850 | 1 | 0.7675 | −1.28 | 1.85 | 1.0000 |
DE | 1.74 | 1 | 0.7675 | 0.1721 | 3.31 | 1.0000 |
A2 | −2.10 | 1 | 0.7675 | −3.67 | −0.5316 | 1.0000 |
B2 | −0.1801 | 1 | 0.7675 | −1.75 | 1.39 | 1.0000 |
C2 | −0.9464 | 1 | 0.7675 | −2.52 | 0.6234 | 1.0000 |
D2 | 0.0136 | 1 | 0.7675 | −1.56 | 1.58 | 1.0000 |
E2 | −0.5426 | 1 | 0.7675 | −2.11 | 1.03 | 1.0000 |
Adsorbents Type | Experimental Conditions | Adsorption Efficiency | Reference |
---|---|---|---|
Nanostructured magnetic ion-imprinted polymer (IIP) | starting concentration of 50 mg/L−1, CT of 3 h, dose of 50 mg L−1, pH 6.0, at 25 °C. | 51.2 mg g−1 | [37] |
Aminated-Fe3O4 nanoparticles filled chitosan/PVA/PES | Initial metal concentration of 20 mg L−1, adsorbent dosage of 0.5 g L−1, 1 h, optimum pH values of 6 for Pb(II) ions sorption and temperature of 30 °C | 21.2 mg g−1 | [38] |
Polyaspartate-Montmorillonite Composite | Starting concentration 20 mg L−1, contact period 1 h, dosage 0.1 g−1, pH (−) temperature 30 °C. | 92.59 mg g−1 | [39] |
mesoporous silica SBA-15-supported Pb(II)-imprinted polymer | Starting concentration of 0.32 mg g−1, contact time of 1.5 h, dose 0.05 g, pH 7, at 25 °C. | 1.92 mg g−1 | [40] |
polyacrylonitrile nanocomposite nanofibers | starting concentration of 30.30 ppm, contact time 1 h, 8 min, adsorbent dose of 2.06 g L−1, pH of 6.18. | 13.96 mg g−1 | [41] |
PPy-PEI nano-adsorbent | Initial concentration 3 ppm, contact time, 0.5 h, dose 0.2 g−1, pH of 10 at temperature 50 °C. | 75.6 mg g−1 | Present Study |
Co (mg/L) | First-Order Kinetic Model | Second-Order Kinetic Model | ||||
---|---|---|---|---|---|---|
Qe (mg/g) | Qe (mg/g) | |||||
1 | 24.69 | 0.0168 | 0.936 | 22.2 | 0.134 | 0.989 |
5 | 12.182 | 0.2182 | 0.922 | 70.8 | 0.037 | 0.998 |
10 | 12.712 | 0.2598 | 0.965 | 75.60 | 0.031 | 0.996 |
Temp in (K) | In Kd | Thermodynamic Parameters | |||
---|---|---|---|---|---|
ΔG° (kJ/mol) | ΔH° (kJ/mol) | ΔS° (J/mol) | |||
293 | 4.65 | −11.313 | 1.439 | 43.52 | |
313 | 4.69 | −12.184 | |||
333 | 4.71 | −13.054 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Birniwa, A.H.; Kehili, S.; Ali, M.; Musa, H.; Ali, U.; Kutty, S.R.M.; Jagaba, A.H.; Abdullahi, S.S.; Tag-Eldin, E.M.; Mahmud, H.N.M.E. Polymer-Based Nano-Adsorbent for the Removal of Lead Ions: Kinetics Studies and Optimization by Response Surface Methodology. Separations 2022, 9, 356. https://doi.org/10.3390/separations9110356
Birniwa AH, Kehili S, Ali M, Musa H, Ali U, Kutty SRM, Jagaba AH, Abdullahi SS, Tag-Eldin EM, Mahmud HNME. Polymer-Based Nano-Adsorbent for the Removal of Lead Ions: Kinetics Studies and Optimization by Response Surface Methodology. Separations. 2022; 9(11):356. https://doi.org/10.3390/separations9110356
Chicago/Turabian StyleBirniwa, Abdullahi Haruna, Sana Kehili, Mujahid Ali, Haruna Musa, Umar Ali, Shamsul Rahman Mohamed Kutty, Ahmad Hussaini Jagaba, Shehu Sa’ad Abdullahi, Elsayed Mohamed Tag-Eldin, and Habibun Nabi Muhammad Ekramul Mahmud. 2022. "Polymer-Based Nano-Adsorbent for the Removal of Lead Ions: Kinetics Studies and Optimization by Response Surface Methodology" Separations 9, no. 11: 356. https://doi.org/10.3390/separations9110356
APA StyleBirniwa, A. H., Kehili, S., Ali, M., Musa, H., Ali, U., Kutty, S. R. M., Jagaba, A. H., Abdullahi, S. S., Tag-Eldin, E. M., & Mahmud, H. N. M. E. (2022). Polymer-Based Nano-Adsorbent for the Removal of Lead Ions: Kinetics Studies and Optimization by Response Surface Methodology. Separations, 9(11), 356. https://doi.org/10.3390/separations9110356