The Effect of Molecular Mass of Hydroxyethyl Cellulose on the Performance of Capillary Electrophoretic Separation of Proteins
Abstract
:1. Introduction
2. Materials and Methods
2.1. Reagents and Chemicals
2.2. Apparatus
3. Results and Discussion
3.1. Separation of Proteins in HEC with Different Relative Molecular Mass
3.2. Separation of Proteins in Mixed HEC with Different Relative Molecular Mass
3.3. The Ratio of the Components in Mixed HEC Polymer
3.4. Optimal Electrophoretic Conditions for Protein Separation in Mixed Polymer
3.5. Application of Mixed Polymer for Separation of Proteins in Tears
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Chrostek, L.; Gindzienska-Sieskiewicz, E.; Gruszewska, E.; Kowal-Bielecka, O.; Cylwik, B. Transferrin isoforms analysis by capillary electrophoresis in systemic lupus erythematosus and systemic sclerosis. Scand. J. Clin. Lab. Investig. 2020, 80, 567–570. [Google Scholar] [CrossRef] [PubMed]
- Michalcova, L.; Nevidalova, H.; Glatz, Z. Toward an automated workflow for the study of plasma protein-drug interactions based on capillary electrophoresis-frontal analysis combined with in-capillary mixing of interacting partners. J. Chromatogr. A 2021, 1635, 461734. [Google Scholar] [CrossRef]
- Zajec, M.; Jacobs, J.F.M.; de Kat Angelino, C.M.; Dekker, L.J.M.; Stingl, C.; Luider, T.M.; De Rijke, Y.B.; VanDuijn, M.M. Integrating Serum Protein Electrophoresis with Mass Spectrometry, A New Workflow for M-Protein Detection and Quantification. J. Proteome Res. 2020, 19, 2845–2853. [Google Scholar] [CrossRef]
- Li, W.; Peng, M.; Pan, Y.; Wu, Y.; Long, M.; Lei, L. Online Column Extraction Coupled with Double-Trap Column System for HPLC Determination of Valproic Acid in Human Plasma Without Derivatization. Chromatographia 2021, 84, 1049–1056. [Google Scholar] [CrossRef]
- Avataneo, V.; Antonucci, M.; De Vivo, E.D.; Briozzo, A.; Cusato, J.; Bermond, F.; Vitale, C.; Vitale, F.; Manca, A.; Palermiti, A. Validation and Clinical Application of a New Liquid Chromatography Coupled to Mass Spectrometry (HPLC-MS) Method for Dalbavancin Quantification in Human Plasma. Separations 2021, 8, 189. [Google Scholar] [CrossRef]
- Zomer, S.; Guillo, C.; Brereton, R.G.; Hanna-Brown, M. Toxicological classification of urine samples using pattern recognition techniques and capillary electrophoresis. Anal. Bioanal. Chem. 2004, 378, 2008–2020. [Google Scholar] [CrossRef] [PubMed]
- Ahmadian, E.; Eftekhari, A.; Babaei, H.; Nayebi, A.M.; Eghbal, M.A. Anti-Cancer Effects of Citalopram on Hepatocellular Carcinoma Cells Occur via Cytochrome C Release and the Activation of NF-kB. Anticancer Agents Med. Chem. 2017, 17, 1570–1577. [Google Scholar] [CrossRef] [PubMed]
- Dawod, M.; Arvin, N.E.; Kennedy, R.T. Recent advances in protein analysis by capillary and microchip electrophoresis. Analyst 2017, 142, 1847–1866. [Google Scholar] [CrossRef] [Green Version]
- Štěpánová, S.; Kašička, V. Recent developments and applications of capillary and microchip electrophoresis in proteomics and peptidomics (2015–mid 2018). J. Sep. Ence 2018, 42, 398–414. [Google Scholar] [CrossRef] [Green Version]
- Štěpánová, S.; Kašička, V. Applications of capillary electromigration methods for separation and analysis of proteins (2017–mid 2021)—A review. Anal. Chim. Acta 2022, 1209, 339447. [Google Scholar] [CrossRef]
- Meyer, S.; Clases, D.; Vega, R.; Padula, M.P.; Doble, P.A. Separation of intact proteins by capillary electrophoresis. Analyst 2022, 147, 2988–2996. [Google Scholar] [CrossRef] [PubMed]
- Leclercq, L.; Renard, C.; Martin, M.; Cottet, H. Quantification of Adsorption and Optimization of Separation of Proteins in Capillary Electrophoresis. Anal. Chem. 2020, 92, 10743–10750. [Google Scholar] [CrossRef] [PubMed]
- Sumitomo, K.; Mayumi, K.; Yokoyama, H.; Sakai, Y.; Minamikawa, H.; Masuda, M.; Shimizu, T.; Ito, K.; Yamaguchi, Y. Dynamic light-scattering measurement of sieving polymer solutions for protein separation on SDS CE. Electrophoresis 2009, 30, 3607–3612. [Google Scholar] [CrossRef] [PubMed]
- Deyanova, E.G.; Huang, R.Y.; Madia, P.A.; Nandi, P.; Gudmundsson, O.; Chen, G. Rapid fingerprinting of a highly glycosylated fusion protein by microfluidic chip-based capillary electrophoresis-mass spectrometry. Electrophoresis 2021, 42, 460–464. [Google Scholar] [CrossRef]
- Zhang, Y.; Kang, S.; Lin, H.; Chen, M.; Li, Y.; Cui, L.; Fan, Y.; Wang, B.; Wang, Y.; Yang, Z. Regulation of zeolite-derived upconversion photocatalytic system for near infrared light/ultrasound dual-triggered multimodal melanoma therapy under a boosted hypoxia relief tumor microenvironment via autophagy. Chem. Eng. J. 2022, 429, 132484. [Google Scholar] [CrossRef]
- Jiang, J.; Zhao, S.; Huang, Y.; Qin, G.; Ye, F. Highly sensitive immunoassay of carcinoembryonic antigen by capillary electrophoresis with gold nanoparticles amplified chemiluminescence detection. J. Chromatogr. A 2013, 1282, 161–166. [Google Scholar] [CrossRef] [PubMed]
- Heller, C. Principles of DNA separation with capillary electrophoresis. Electrophoresis 2001, 22, 629–643. [Google Scholar] [CrossRef]
- Durney, B.C.; Crihfield, C.L.; Holland, L.A. Capillary electrophoresis applied to DNA: Determining and harnessing sequence and structure to advance bioanalyses (2009-2014). Anal. Bioanal. Chem. 2015, 407, 6923–6938. [Google Scholar] [CrossRef] [Green Version]
- Guttman, A.; Filep, C.; Karger, B.L. Fundamentals of Capillary Electrophoretic Migration and Separation of SDS Proteins in Borate Cross-Linked Dextran Gels. Anal. Chem. 2021, 93, 9267–9276. [Google Scholar] [CrossRef]
- Gornushkin, I.B.; Amponsah-Manager, K.; Smith, B.W.; Omenetto, N.; Winefordner, J.D. Microchip laser-induced breakdown spectroscopy: A preliminary feasibility investigation. Appl. Spectrosc. 2004, 58, 762–769. [Google Scholar] [CrossRef]
- Huang, Y.F.; Hsieh, M.M.; Tseng, W.L.; Chang, H.T. On-line concentration of microheterogeneous proteins by capillary electrophoresis using SDS and PEO as additives. J. Proteome Res. 2006, 5, 429–436. [Google Scholar] [CrossRef] [PubMed]
- Tseng, W.L.; Lin, Y.W.; Chang, H.T. Improved separation of microheterogeneities and isoforms of proteins by capillary electrophoresis using segmental filling with SDS and PEO in the background electrolyte. Anal. Chem. 2002, 74, 4828–4834. [Google Scholar] [CrossRef] [PubMed]
- Wang, Z.; Wang, P.; Tao, C.; Zhang, D.; Li, Z.; Yamaguchi, Y. Capillary electrophoresis of DNA with high resolution based on copoly(pentaerythritoltetra succinimidylcarboxypentyl/aminopropyl polyoxyethylene) hydrogel. Anal. Chim. Acta 2021, 1178, 338811. [Google Scholar] [CrossRef] [PubMed]
- Dung, L.T.K.; Du, B.D. Low molecular weight of hydroxyethyl cellulose to extract proteins in natural rubber latex. Vietnam J. Sci. Technol. 2021, 59, 552–559. [Google Scholar] [CrossRef]
- Kan, C.W.; Doherty, E.A.; Buchholz, B.A.; Barron, A.E. Thermoresponsive N,N-dialkylacrylamide copolymer blends as DNA sieving matrices with a thermally tunable mesh size. Electrophoresis 2004, 25, 1007–1015. [Google Scholar] [CrossRef]
- Li, Z.; Ju, R.; Sekine, S.; Zhang, D.; Zhuang, S.; Yamaguchi, Y. All-in-one microfluidic device for on-site diagnosis of pathogens based on an integrated continuous flow PCR and electrophoresis biochip. Lab. Chip. 2019, 19, 2663–2668. [Google Scholar] [CrossRef]
- Li, Z.; Yang, R.; Wang, Q.; Zhang, D.; Zhuang, S.; Yamaguchi, Y. Electrophoresis of periodontal pathogens in poly(ethyleneoxide) solutions with uncoated capillary. Anal. Biochem. 2015, 471, 70–72. [Google Scholar] [CrossRef]
- Zhu, Y.; Li, Z.; Wang, P.; Shen, L.; Zhang, D.; Yamaguchi, Y. Factors affecting the separation performance of proteins in capillary electrophoresis. J. Chromatogr. B 2018, 1083, 63–67. [Google Scholar] [CrossRef]
- Yamada, M.; Mochizuki, H.; Kawai, M.; Tsubota, K.; Bryce, T.J. Decreased tear lipocalin concentration in patients with meibomian gland dysfunction. Br. J. Ophthalmol. 2005, 89, 803–805. [Google Scholar] [CrossRef] [Green Version]
- Glasgow, B.J.; Abduragimov, A.R. Lipocalin-1 is the acceptor protein for phospholipid transfer protein in tears. Biochem. Biophys. Res. Commun. 2021, 548, 35–38. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Huang, J.; Tao, C.; Li, Z.; Miyake, E.; You, Q.; Xiao, W.; Zhang, D.; Yamaguchi, Y. The Effect of Molecular Mass of Hydroxyethyl Cellulose on the Performance of Capillary Electrophoretic Separation of Proteins. Separations 2022, 9, 284. https://doi.org/10.3390/separations9100284
Huang J, Tao C, Li Z, Miyake E, You Q, Xiao W, Zhang D, Yamaguchi Y. The Effect of Molecular Mass of Hydroxyethyl Cellulose on the Performance of Capillary Electrophoretic Separation of Proteins. Separations. 2022; 9(10):284. https://doi.org/10.3390/separations9100284
Chicago/Turabian StyleHuang, Jiaxin, Chunxian Tao, Zhenqing Li, Erika Miyake, Qingxiang You, Wen Xiao, Dawei Zhang, and Yoshinori Yamaguchi. 2022. "The Effect of Molecular Mass of Hydroxyethyl Cellulose on the Performance of Capillary Electrophoretic Separation of Proteins" Separations 9, no. 10: 284. https://doi.org/10.3390/separations9100284
APA StyleHuang, J., Tao, C., Li, Z., Miyake, E., You, Q., Xiao, W., Zhang, D., & Yamaguchi, Y. (2022). The Effect of Molecular Mass of Hydroxyethyl Cellulose on the Performance of Capillary Electrophoretic Separation of Proteins. Separations, 9(10), 284. https://doi.org/10.3390/separations9100284