Hypericum spp.—An Overview of the Extraction Methods and Analysis of Compounds
Abstract
:1. Introduction
2. Materials and Methods
2.1. Data Obtention
2.2. Data Analysis
- Methods of extraction;
- Analysis methods.
3. Results and Discussion
3.1. Extraction Methods
3.1.1. Extraction Solvents
3.1.2. Extraction Methods
Room-Temperature Extraction Techniques
- Room-temperature stirring
- Maceration
Heat Extraction Techniques
- Classical heating
- Ultrasonication
Hydrodistillation
Microwave Extraction
Supercritical CO2 Extraction
Preparative Chromatography for Extracts
3.2. Analysis of Compounds
- Separation methods and hyphenated separation methods: liquid chromatographic methods—high-performance liquid chromatography and ultra-high-pressure liquid chromatography (HPLC and UHPLC), liquid chromatography coupled to (tandem) mass spectrometry (LC-MS, LC-MS/MS), thin-layer chromatography and high-performance thin-layer chromatography (TLC and HPTLC), gas chromatographic methods—gas chromatography (GC), gas chromatography coupled to (tandem) mass spectrometry (GC-MS, GC-MS/MS); electrophoretic methods—capillary zone electrophoresis (CZE);
- Optical molecular spectroscopy-based methods and optical atomic spectroscopy-based methods: molecular electronic ultraviolet–visible spectroscopy (UV-VIS); near-infrared and medium-infrared molecular vibrational spectroscopy—near-infrared (NIR) and Fourier-transform infrared spectroscopy (FT-IR); atomic absorption spectroscopy (AAS); atomic emission spectroscopy (AES); inductively coupled plasma atomic emission spectroscopy (ICP-OES).
3.2.1. Separation Methods and Hyphenated Separation Methods
High-Pressure and Ultra-High-Pressure Liquid Chromatography
Liquid Chromatography Coupled to Mass Spectrometry
Gas Chromatography and Gas Chromatography Coupled to Mass Spectrometry for Volatile Compounds
Capillary Electrophoresis
3.2.2. Molecular and Atomic Optical Spectroscopic Methods
3.2.3. Spectral Methods for Structural Elucidation—Nuclear Magnetic Resonance
4. Concluding Remarks and Future Perspectives
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- NorMaN, K.B. And then came molecular phylogenetics—Reactions to a monographic study of Hypericum (Hypericaceae). Phytotaxa 2016, 255, 181–198. [Google Scholar]
- Bruňáková, K.; Bálintová, M.; Henzelyová, J.; Kolarčik, V.; Kimáková, A.; Petijová, L.; Čellárová, E. Phytochemical profiling of several Hypericum species identified using genetic markers. Phytochemistry 2021, 187, 112742. [Google Scholar] [CrossRef] [PubMed]
- de Carvalho Meirelles, G.; Bridi, H.; von Poser, G.L.; Nemitz, M.C. Hypericum species: An analysis on the patent technologies. Fitoterapia 2019, 139, 104363. [Google Scholar] [CrossRef] [PubMed]
- Dresler, S.; Kováčik, J.; Strzemski, M.; Sowa, I.; Wójciak-Kosior, M. Methodological aspects of biologically active compounds quantification in the genus Hypericum. J. Pharm. Biomed. Anal. 2018, 155, 82–90. [Google Scholar] [CrossRef]
- Cirak, C.; Radusiene, J.; Jakstas, V.; Ivanauskas, L.; Yayla, F.; Seyis, F.; Camas, N. Secondary metabolites of Hypericum species from the Drosanthe and Olympia sections. S. Afr. J. Bot 2016, 104, 82–90. [Google Scholar] [CrossRef]
- Zhang, R.; Ji, Y.; Zhang, X.; Kennelly, E.J.; Long, C. Ethnopharmacology of Hypericum species in China: A comprehensive review on ethnobotany, phytochemistry and pharmacology. J. Ethnopharmacol. 2020, 254, 112686. [Google Scholar] [CrossRef]
- Săvulescu, T. Flora Republicii Populare Române; Editura Academiei Republicii Populare Române: Bucharest, Romania, 1955; pp. 23–46. [Google Scholar]
- Uerpmann-Wittzack, R.; Schmahl, S.; Breuer, M. European Directorate for the Quality of Medicines and HealthCare, Hyperici Herba-ST John’s Wort (01/2017 1438); European Pharmacopoeia: Strasbourg, France, 2020; pp. 1631–1633. [Google Scholar]
- Committee on Herbal Medicinal Poducts (HMPC). Community Herbal Monograph on Hypericum Perforatum L., Herba (Well-established medicinal use). Eur. Med. Agency Eval. Med. Hum. Use 2009, 11, 1–9. [Google Scholar]
- Bagdonaite, E.; Mártonfi, P.; Repčák, M.; Labokas, J. Variation in concentrations of major bioactive compounds in Hypericum perforatum L. from Lithuania. Ind. Crops Prod. 2012, 35, 302–308. [Google Scholar] [CrossRef]
- Ersoy, E.; Eroglu Ozkan, E.; Boga, M.; Mat, A. Evaluation of in vitro biological activities of three Hypericum species (H. calycinum, H. confertum, and H. perforatum) from Turkey. S. Afr. J. Bot. 2020, 130, 141–147. [Google Scholar] [CrossRef]
- Silva, A.R.; Taofiq, O.; Ferreira, I.C.F.R.; Barros, L. Hypericum genus cosmeceutical application—A decade comprehensive review on its multifunctional biological properties. Ind. Crops Prod. 2021, 159, 113053. [Google Scholar] [CrossRef]
- Galeotti, N. Hypericum perforatum (St John’s wort) beyond depression: A therapeutic perspective for pain conditions. J. Ethnopharmacol. 2017, 200, 136–146. [Google Scholar] [CrossRef] [PubMed]
- Ersoy, E.; Eroglu Ozkan, E.; Boga, M.; Yilmaz, M.A.; Mat, A. Anti-aging potential and anti-tyrosinase activity of three Hypericum species with focus on phytochemical composition by LC–MS/MS. Ind Crops Prod. 2019, 141, 1–9. [Google Scholar] [CrossRef]
- Nogueira, T.; Medeiros, M.A.; Marcelo-Curto, M.J.; García-Pérez, B.E.; Luna-Herrera, J.; Costa, M.C. Profile of antimicrobial potential of fifteen Hypericum species from Portugal. Ind. Crops Prod. 2013, 47, 126–131. [Google Scholar] [CrossRef] [Green Version]
- Saddiqe, Z.; Naeem, I.; Hellio, C.; Patel, A.V.; Abbas, G. Phytochemical profile, antioxidant and antibacterial activity of four Hypericum species from the UK. S. Afr. J. Bot 2020, 133, 45–53. [Google Scholar] [CrossRef]
- Ji, Y.-Y.; Yang, J.-Y.; Zhang, R.-F.; Chen, Q.-Y.; Xu, R.; Wei, X.-J.; Chen, X.-H.; Chen, S.-X.; Guo, F.-D.; Kennelly, E.J.; et al. Chemical characterization, neuroprotective, antimicrobial and enzyme inhibitory activities of Hypericum volatile oils. Ind. Crops Prod. 2021, 172, 1–12. [Google Scholar] [CrossRef]
- Tusevski, O.; Krstikj, M.; Stanoeva, J.P.; Stefova, M.; Gadzovska Simic, S. Phenolic profile and biological activity of Hypericum perforatum L.: Can roots be considered as a new source of natural compounds? S. Afr. J. Bot. 2018, 117, 301–310. [Google Scholar] [CrossRef]
- Zorzetto, C.; Sánchez-Mateo, C.C.; Rabanal, R.M.; Lupidi, G.; Petrelli, D.; Vitali, L.A.; Bramucci, M.; Quassinti, L.; Caprioli, G.; Papa, F.; et al. Phytochemical analysis and in vitro biological activity of three Hypericum species from the Canary Islands (Hypericum reflexum, Hypericum canariense and Hypericum grandifolium). Fitoterapia 2015, 100, 95–109. [Google Scholar] [CrossRef]
- Temerdashev, Z.; Milevskaya, V.; Vinitskaya, E. The method of establishing the authenticity and quality of Hypericum perforatum L. and Salvia officinalis L. MethodsX 2021, 8, 101487. [Google Scholar] [CrossRef]
- Heydarian, M.; Jooyandeh, H.; Nasehi, B.; Noshad, M. Characterization of Hypericum perforatum polysaccharides with antioxidant and antimicrobial activities: Optimization based statistical modeling. Int. J. Biol. Macromol. 2017, 104, 287–293. [Google Scholar] [CrossRef] [PubMed]
- Sofi, S.H.; Nuraddin, S.M.; Amin, Z.A.; Al-Bustany, H.A.; Nadir, M.Q. Gastroprotective activity of Hypericum perforatum extract in ethanol-induced gastric mucosal injury in Wistar rats: A possible involvement of H+/K+ ATPase α inhibition. Heliyon 2020, 6, e05249. [Google Scholar] [CrossRef] [PubMed]
- Duan, Y.; Bu, P.; Xie, S.; Guo, Y.; Shi, Z.; Qi, C.; Zhang, Y. (±)-hyperzewalsins A−D, four pairs of nor-monocyclic polyprenylated acylphloroglucinols with immunosuppressive activity from hypericum przewalskii maxim. Phytochemistry 2021, 187, 112779. [Google Scholar] [CrossRef]
- Guo, Y.; Zhang, N.; Duan, X.; Cao, Y.; Xue, Y.; Luo, Z.; Zhu, H.; Chen, C.; Wang, J.; Zhang, Y. Hyperforatins L–U: Prenylated acylphloroglucinols with a terminal double bond from Hypericum perforatum L. (St. John’s Wort). Phytochemistry 2019, 164, 41–49. [Google Scholar] [CrossRef] [PubMed]
- Guo, Y.; Cao, Y.; Qi, C.; Tong, Q.; Chen, C.; Yang, J.; Zhu, H.; Zhang, Y. Polycyclic polyprenylated acylphloroglucinols with immunosuppressive activity from Hypericum perforatum and absolute configurations assignment of previously reported analogues. Bioorganic Chem. 2021, 114, 105144. [Google Scholar] [CrossRef] [PubMed]
- Ccana-Ccapatinta, G.V.; Flores, C.S.; Soria, E.J.U.; Pari, J.C.; Sánchez, W.G.; Crockett, S.L.; von Poser, G.L.; Jimenez, C.D.C. Assessing the phytochemical profiles and antidepressant-like activity of four Peruvian Hypericum species using the murine forced swimming test. Phytochem. Lett. 2014, 10, 107–112. [Google Scholar] [CrossRef]
- Rusalepp, L.; Raal, A.; Püssa, T.; Mäeorg, U. Comparison of chemical composition of Hypericum perforatum and H. maculatum in Estonia. Biochem. Syst. Ecol. 2017, 73, 41–46. [Google Scholar] [CrossRef]
- Altun, M.L.; Yilmaz, B.S.; Orhan, I.E.; Citoglu, G.S. Assessment of cholinesterase and tyrosinase inhibitory and antioxidant effects of Hypericum perforatum L. (St. John’s wort). Ind. Crop. Prod. 2013, 43, 87–92. [Google Scholar] [CrossRef]
- Koturevic, B.; Adnadjevic, B.; Jovanovic, J. Comparative kinetic analysis of total hypericin extraction from Hypericum perforatum flowers carried out under simultaneous external physical field and cooling reaction system operational conditions. Chem. Eng. Res. Des. 2020, 165, 106–117. [Google Scholar] [CrossRef]
- Napoli, E.; Siracusa, L.; Ruberto, G.; Carrubba, A.; Lazzara, S.; Speciale, A.; Cimino, F.; Saija, A.; Cristani, M. Phytochemical profiles, phototoxic and antioxidant properties of eleven Hypericum species—A comparative study. Phytochemistry 2018, 152, 162–173. [Google Scholar] [CrossRef]
- Nazlı, O.; Baygar, T.; Dönmez, E.D.; Dere, Ö.; Uysal, A.I.; Aksozek, A.; Işık, C.; Aktürk, S. Antimicrobial and antibiofilm activity of polyurethane/Hypericum perforatum extract (PHPE) composite. Bioorganic. Chem. 2018, 82, 224–228. [Google Scholar] [CrossRef] [PubMed]
- Pradeep, M.; Kachlicki, P.; Franklin, G. Simultaneous determination of naphtodianthrones, emodin, skyrin and new bisanthrones in Hypericum perforatum L. in vitro shoot cultures. Ind. Crop. Prod. 2019, 144, 112003. [Google Scholar] [CrossRef]
- Şengün, D.N.; Karaca, I.R.; Saraç, N.; Uğur, A.; Fırat, A.; Kaymaz, F.F.; Öztürk, H.S. Evaluation of the chemopreventive effects of Hypericum perforatum L. on DMBA-applied rat oral mucosa. Arch. Oral Biol. 2021, 127, 105139. [Google Scholar] [CrossRef]
- Carrubba, A.; Lazzara, S.; Giovino, A.; Ruberto, G.; Napoli, E. Content variability of bioactive secondary metabolites in Hypericum perforatum L. Phytochem. Lett. 2021, 46, 71–78. [Google Scholar] [CrossRef]
- Radulović, N.S.; Genčić, M.S.; Stojanović, N.M.; Randjelović, P.J.; Baldovini, N.; Kurteva, V. Prenylated β-diketones, two new additions to the family of biologically active Hypericum perforatum L. (Hypericaceae) secondary metabolites. Food Chem. Toxicol. 2018, 118, 505–513. [Google Scholar] [CrossRef] [PubMed]
- Ramalhete, N.; Machado, A.; Serrano, R.; Gomes, E.T.; Mota-Filipe, H.; Silva, O. Comparative study on the in vivo antidepressant activities of the Portuguese Hypericum foliosum, Hypericum androsaemum and Hypericum perforatum medicinal plants. Ind. Crop. Prod. 2015, 82, 29–36. [Google Scholar] [CrossRef]
- Bálintová, M.; Bruňáková, K.; Petijová, L.; Čellárová, E. Targeted metabolomic profiling reveals interspecific variation in the genus Hypericum in response to biotic elicitors. Plant. Physiol. Biochem. 2019, 135, 348–358. [Google Scholar] [CrossRef]
- Becker, L.; Zaiter, A.; Petit, J.; Zimmer, D.; Karam, M.-C.; Baudelaire, E.; Scher, J.; Dicko, A. Improvement of antioxidant activity and polyphenol content of Hypericum perforatum and Achillea millefolium powders using successive grinding and sieving. Ind. Crop. Prod. 2016, 87, 116–123. [Google Scholar] [CrossRef]
- He, M.; Wang, Z. Genetic diversity of Hypericum perforatum collected from the Qinling Mountains of China. Biochem. Syst. Ecol. 2013, 50, 232–239. [Google Scholar] [CrossRef]
- Tocci, N.; Weil, T.; Perenzoni, D.; Narduzzi, L.; Madriñán, S.; Crockett, S.; Nürk, N.M.; Cavalieri, D.; Mattivi, F. Phenolic profile, chemical relationship and antifungal activity of Andean Hypericum species. Ind. Crop. Prod. 2018, 112, 32–37. [Google Scholar] [CrossRef]
- Zhang, J.; Feng, C.; Xu, H.; Tan, X.; Hagedoorn, P.-L.; Ding, S. Enhanced hypericin extraction from Hypericum perforatum L. by coupling microwave with enzyme-assisted strategy. Ind. Crop. Prod. 2019, 137, 231–238. [Google Scholar] [CrossRef]
- Zhang, R.; Ji, Y.; Morcol, T.; Lin, F.; Gu, R.; Kennelly, E.J.; Long, C. UPLC-QTof-MS chemical profiling and characterization of antiproliferative and anti-inflammatory compounds from seven Hypericum species in China. Ind. Crop. Prod. 2021, 173, 114156. [Google Scholar] [CrossRef]
- Sharma, S.; Walia, S.; Rathore, S.; Kumar, P.; Kumar, R. Combined effect of elevated CO2 and temperature on growth, biomass and secondary metabolite of Hypericum perforatum L. in a western Himalayan region. J. Appl. Res. Med. Aromat. Plants 2019, 16, 100239. [Google Scholar] [CrossRef]
- Cirak, C.; Radušienė, J.; Kurtarc, E.; Marksa, M.; Ivanauskas, L. In vitro plant regeneration and jasmonic acid induced bioactive chemical accumulations in two Hypericum species from Turkey. S. Afr. J. Bot. 2019, 128, 312–318. [Google Scholar] [CrossRef]
- Cirak, C.; Radusiene, J.; Jakštas, V.; Ivanauskas, L.; Seyis, F.; Yayla, F. Altitudinal changes in secondary metabolite contents of Hypericum androsaemum and Hypericum polyphyllum. Biochem. Syst. Ecol. 2017, 70, 108–115. [Google Scholar] [CrossRef]
- Gitea, D.; Vicas, S.; Gitea, M.A.; Nemeth, S.; Țiț, D.M.; Pasca, B.; Purza, L.; Iovan, C.V. HPLC Screening of Bioactives Compounds and Antioxidant Capacity of Different Hypericum Species. Rev. Chim. 2018, 69, 305–309. [Google Scholar] [CrossRef]
- Seyis, F.; Yurteri, E.; Özcan, A.; Cirak, C. Altitudinal impacts on chemical content and composition of Hypericum perforatum, a prominent medicinal herb. S. Afr. J. Bot. 2020, 135, 391–403. [Google Scholar] [CrossRef]
- Zeliou, K.; Koui, E.-M.; Papaioannou, C.; Koulakiotis, N.S.; Iatrou, G.; Tsarbopoulos, A.; Papasotiropoulos, V.; Lamari, F.N. Metabolomic fingerprinting and genetic discrimination of four Hypericum taxa from Greece. Phytochemistry 2020, 174, 112290. [Google Scholar] [CrossRef] [PubMed]
- Tahmasebi-Boldaji, R.; Hatamipour, M.-S.; Khanahmadi, M.; Sadeh, P.; Najafipour, I. Ultrasound-assisted packed-bed extraction of hypericin from Hypericum perforatum L. and optimization by response surface methodology. Ultrason. Sonochemistry 2019, 57, 89–97. [Google Scholar] [CrossRef]
- Lou, H.; Yi, P.; Hu, Z.; Li, Y.; Zeng, Y.; Gu, W.; Huang, L.; Yuan, C.; Hao, X. Polycyclic polyprenylated acylphloroglucinols with acetylcholinesterase inhibitory activities from Hypericum perforatum. Fitoterapia 2020, 143, 104550. [Google Scholar] [CrossRef] [PubMed]
- Mandrone, M.; Scognamiglio, M.; Fiorentino, A.; Sanna, C.; Cornioli, L.; Antognoni, F.; Bonvicini, F.; Poli, F. Phytochemical profile and α-glucosidase inhibitory activity of Sardinian Hypericum scruglii and Hypericum hircinum. Fitoterapia 2017, 120, 184–193. [Google Scholar] [CrossRef]
- Bruňáková, K.; Čellárová, E. Modulation of anthraquinones and phloroglucinols biosynthesis in Hypericum spp. by cryogenic treatment. J. Biotechnol. 2017, 251, 59–67. [Google Scholar] [CrossRef]
- Doğan, Ş.; Gökalsın, B.; Şenkardeş, İ; Doğan, A.; Sesal, N.C. Anti-quorum sensing and anti-biofilm activities of Hypericum perforatum extracts against Pseudomonas aeruginosa. J. Ethnopharmacol. 2019, 235, 293–300. [Google Scholar] [CrossRef]
- Singh, P.; Kaufholdt, D.; Awadalah, M.; Hänsch, R.; Beerhues, L.; Gaid, M. Cytosolic aromatic aldehyde dehydrogenase provides benzoic acid for xanthone biosynthesis in Hypericum. Plant Physiol. Biochem. 2021, 160, 82–93. [Google Scholar] [CrossRef] [PubMed]
- Jafarirad, S.; Kosari-Nasab, M.; Tavana, R.M.; Mahjouri, S.; Ebadollahi, R. Impacts of manganese bio-based nanocomposites on phytochemical classification, growth and physiological responses of Hypericum perforatum L. shoot cultures. Ecotoxicol. Environ. Saf. 2020, 209, 111841. [Google Scholar] [CrossRef] [PubMed]
- Jarzębski, M.; Smułek, W.; Baranowska, H.M.; Masewicz, Ł.; Kobus-Cisowska, J.; Ligaj, M.; Kaczorek, E. Characterization of St. John’s wort (Hypericum perforatum L.) and the impact of filtration process on bioactive extracts incorporated into carbohydrate-based hydrogels. Food Hydrocoll. 2020, 104, 105748. [Google Scholar] [CrossRef]
- Karakashov, B.; Grigorakis, S.; Loupassaki, S.; Makris, D.P. Optimisation of polyphenol extraction from Hypericum perforatum (St. John’s Wort) using aqueous glycerol and response surface methodology. J. Appl Res. Med. Aromat. Plants 2015, 2, 1–8. [Google Scholar] [CrossRef]
- Barros, F.M.; Pippi, B.; Dresch, R.R.; Dauber, B.; Luciano, S.C.; Apel, M.A.; Fuentefria, A.; von Poser, G.L. Antifungal and antichemotactic activities and quantification of phenolic compounds in lipophilic extracts of Hypericum spp. native to South Brazil. Ind. Crop. Prod. 2012, 44, 294–299. [Google Scholar] [CrossRef]
- Ccana-Ccapatinta, G.V.; Kaiser, S.; Danielli, L.J.; Dresch, R.R.; D’Avila, F.B.; Fröehlich, P.E.; Ortega, G.G.; Apel, M.A.; Von Poser, G.L. Acylphloroglucinol profile and antichemotactic activity of lipophilic extracts from Peruvian Hypericum species. Ind. Crop. Prod. 2018, 125, 323–327. [Google Scholar] [CrossRef]
- da Conceição, A.O.; von Poser, G.L.; Barbeau, B.; Lafond, J. Hypericum caprifoliatum and Hypericum connatum affect human trophoblast-like cells differentiation and Ca2+ influx. Asian Pac. J. Trop Biomed. 2014, 4, 367–373. [Google Scholar] [CrossRef] [Green Version]
- Dagnino, A.P.; de Barros, F.M.C.; Ccana-Ccapatinta, G.V.; Prophiro, J.S.; von Poser, G.L.; Romão, P.R. Leishmanicidal activity of lipophilic extracts of some Hypericum species. Phytomedicine 2015, 22, 71–76. [Google Scholar] [CrossRef] [Green Version]
- Gaid, M.; Haas, P.; Beuerle, T.; Scholl, S.; Beerhues, L. Hyperforin production in Hypericum perforatum root cultures. J. Biotechnol. 2016, 222, 47–55. [Google Scholar] [CrossRef]
- Heinrich, M.; Vikuk, V.; Daniels, R.; Stintzing, F.C.; Kammerer, D.R. Characterization of Hypericum perforatum L. (St. John’s wort) macerates prepared with different fatty oils upon processing and storage. Phytochem. Lett. 2017, 20, 470–480. [Google Scholar] [CrossRef]
- Eroglu, E.; Girgin, S.N. A unique phenolic extraction method from olive oil macerate of Hypericum perforatum using DMSO: Assessment of in vitro anticancer activity, LC-MS/MS profile, total phenolic content and antioxidant capacity. S. Afr. J. Bot. 2021, 139, 6–11. [Google Scholar] [CrossRef]
- Yücel, A.; Kan, Y.; Yesilada, E.; Akın, O. Effect of St. John’s wort (Hypericum perforatum) oily extract for the care and treatment of pressure sores; a case report. J. Ethnopharmacol. 2017, 196, 236–241. [Google Scholar] [CrossRef]
- Hosni, K.; Msaâda, K.; Ben Taârit, M.; Marzouk, B. Fatty acid composition and tocopherol content in four Tunisian Hypericum species: Hypericum perforatum, Hypericum tomentosum, Hypericum perfoliatum and Hypericum ericoides ssp. Roberti. Arab. J. Chem. 2017, 10, S2736–S2741. [Google Scholar] [CrossRef] [Green Version]
- Abdelhadi, M.; Meullemiestre, A.; Gelicus, A.; Hassani, A.; Rezzoug, S.-A. Intensification of Hypericum perforatum L. oil isolation by solvent-free microwave extraction. Chem. Eng. Res. Des. 2015, 93, 621–631. [Google Scholar] [CrossRef]
- Sakavitsi, M.-E.; Christodoulou, M.-I.; Tchoumtchoua, J.; Fokialakis, N.; Kokkinopoulou, I.K.; Papageorgiou, E.; Argyropoulou, A.; Skaltsounis, L.A.; Halabalaki, M.; Scorilas, A. Comparative HPLC-DAD and UHPLC-ESI(-)-HRMS & MS/MS profiling of Hypericum species and correlation with necrotic cell-death activity in human leukemic cells. Phytochem. Lett. 2017, 20, 481–490. [Google Scholar] [CrossRef]
- Strzemski, M.; Dresler, S.; Sowa, I.; Kurach, Ł.; Kováčik, J.; Wojas-Krawczyk, K.; Wójciak, M. Direct spectroscopic and GC profiling combined with chemometric analysis as an alternative approach to investigate Hypericum species: Is it possible to replace HPLC? Ind. Crops Prod. 2020, 157, 112930. [Google Scholar] [CrossRef]
- Mohammadi, G.; Rafiee, G.; El Basuini, M.F.; Van Doan, H.; Ahmed, H.A.; Dawood, M.A.; Abdel-Latif, H.M. Oregano (Origanum vulgare), St John’s-wort (Hypericum perforatum), and lemon balm (Melissa officinalis) extracts improved the growth rate, antioxidative, and immunological responses in Nile tilapia (Oreochromis niloticus) infected with Aeromonas hydrophil. Aquac. Rep. 2020, 18, 100445. [Google Scholar] [CrossRef]
- Haas, P.; Gaid, M.; Zarinwall, A.; Beerhues, L.; Scholl, S. Downstream processing of hyperforin from Hypericum perforatum root cultures. Eur. J. Pharm. Biopharm. 2018, 126, 104–107. [Google Scholar] [CrossRef]
- Tocci, N.; D’Auria, F.D.; Simonetti, G.; Panella, S.; Palamara, A.T.; Debrassi, A.; Rodrigues, C.A.; Filho, V.C.; Sciubba, F.; Pasqua, G. Bioassay-guided fractionation of extracts from Hypericum perforatum in vitro roots treated with carboxymethylchitosans and determination of antifungal activity against human fungal pathogens. Plant Physiol. Biochem. 2013, 70, 342–347. [Google Scholar] [CrossRef]
- Bertoli, A.; Çirak, C.; Seyis, F. Hypericum spp. volatile profiling and the potential significance in the quality control of new valuable raw material. Microchem. J. 2018, 136, 94–100. [Google Scholar] [CrossRef] [Green Version]
- Đorđević, A.; Lazarević, J.; Šmelcerović, A.; Stojanović, G. The case of Hypericum rochelii Griseb. & Schenk and Hypericum umbellatum A. Kern. essential oils: Chemical composition and antimicrobial activity. J. Pharm. Biomed. Anal. 2013, 77, 145–148. [Google Scholar] [CrossRef] [PubMed]
- Khorshidi, J.; Morshedloo, M.R.; Moradi, S. Essential oil composition of three Iranian Hypericum species collected from different habitat conditions. Biocatal. Agric. Biotechnol. 2020, 28, 101755. [Google Scholar] [CrossRef]
- Morshedloo, M.R.; Ebadi, A.; Maggi, F.; Fattahi, R.; Yazdani, D.; Jafari, M. Chemical characterization of the essential oil compositions from Iranian populations of Hypericum perforatum L. Ind. Crop. Prod. 2015, 76, 565–573. [Google Scholar] [CrossRef]
- Ortega-Puma, C.; Fajardo-Carmona, S.; Ortíz-Ulloa, J.; Tobar, V.; Quito-Ávila, D.; Santos-Ordoñez, E.; Jerves-Andrade, L.; Cuzco, N.; Wilches, I.; León-Tamaríz, F. Evaluation of the variables altitude, soil composition and development of a predictive model of the antibacterial activity for the genus Hypericum by chromatographic fingerprint. Phytochem. Lett. 2019, 31, 104–113. [Google Scholar] [CrossRef]
- Zhang, J.; Feng, C.; Ge, P.; Wang, Q.; Liu, Y.; Xu, H.; Zhou, X. High purity separation of hypericin from Hypericum perforatum L. extract with macroporous resin column coupling preparative liquid chromatography. Process Biochem. 2021, 103, 107–113. [Google Scholar] [CrossRef]
- de Carvalho Meirelles, G.; Bridi, H.; Rates, S.M.K.; von Poser, G.L. Southern Brazilian Hypericum Species, Promising Sources of Bioactive Metabolites, 1st ed.; Studies in Natural Products Chemistry; Elsevier B.V.: Amsterdam, The Netherlands, 2018; Volume 59, pp. 491–507. [Google Scholar]
- Eray, N.; Dalar, A.; Turker, M. The effects of abiotic stressors and signal molecules on phenolic composition and antioxidant activities of in vitro regenerated Hypericum perforatum (St. John’s Wort). S. Afr. J. Bot. 2020, 133, 253–263. [Google Scholar] [CrossRef]
- Yao, Y.; Kang, T.; Jin, L.; Liu, Z.; Zhang, Z.; Xing, H.; Sun, P.; Li, M. Temperature-dependent growth and hypericin biosynthesis in Hypericum perforatum. Plant Physiol. Biochem. 2019, 139, 613–619. [Google Scholar] [CrossRef] [PubMed]
- Li, Z.; Qin, C.; Li, D.; Hou, Y.; Li, S.; Sun, J. Molecularly imprinted polymer for specific extraction of hypericin from Hypericum perforatum L. herbal extract. J. Pharm. Biomed. Anal. 2014, 98, 210–220. [Google Scholar] [CrossRef]
- Council of Europe. Hyperici herbae extractum siccum quantificatum. Eur. Pharmacopoeia. 2013, 8, 1391–1395. [Google Scholar]
- Pellegrini, E.; Campanella, A.; Cotrozzi, L.; Tonelli, M.; Nali, C.; Lorenzini, G. Ozone primes changes in phytochemical parameters in the medicinal herb Hypericum perforatum (St. John’s wort). Ind. Crop. Prod. 2018, 126, 119–128. [Google Scholar] [CrossRef]
- Belwal, T.; Devkota, H.P.; Singh, M.K.; Sharma, R.; Upadhayay, S.; Joshi, C.; Bisht, K.; Gour, J.K.; Bhatt, I.D.; Rawal, R.S.; et al. St. John’s Wort (Hypericum perforatum). In Nonvitamin and Nonmineral Nutritional Supplements; Elsevier Inc.: Amsterdam, The Netherlands, 2018; pp. 415–432. [Google Scholar]
- Bridi, H.; de Carvalho Meirelles, G.; von Poser, G.L. Structural diversity and biological activities of phloroglucinol derivatives from Hypericum species. Phytochemistry 2018, 155, 203–232. [Google Scholar] [CrossRef]
- Huck, C.; Abel, G.; Popp, M.; Bonn, G. Comparative analysis of naphthodianthrone and phloroglucine derivatives in St. John’s Wort extracts by near infrared spectroscopy, high-performance liquid chromatography and capillary electrophoresis. Anal. Chim. Acta 2006, 580, 223–230. [Google Scholar] [CrossRef]
- Filippini, R.; Piovan, A.; Borsarini, A.; Caniato, R. Study of dynamic accumulation of secondary metabolites in three subspecies of Hypericum perforatum. Fitoterapia 2010, 81, 115–119. [Google Scholar] [CrossRef]
- Temerdashev, Z.; Milevskaya, V.; Shpigun, O.; Prasad, S.; Vinitskaya, E.; Ryaboko, L. Stability of some biologically active substances in extracts and preparations based on St. John’s wort (Hypericum perforatum L.) And sage (Salvia officinalis L.). Ind. Crop. Prod. 2020, 156, 112879. [Google Scholar] [CrossRef]
- Klejdus, B.; Kováčik, J.; Babula, P. PAL inhibitor evokes different responses in two Hypericum species. Plant Physiol. Biochem. 2013, 63, 82–88. [Google Scholar] [CrossRef] [PubMed]
- Kováčik, J.; Klejdus, B.; Bačkor, M. Nitric oxide signals ROS scavenger-mediated enhancement of PAL activity in nitrogen-deficient Matricaria chamomilla roots: Side effects of scavengers. Free. Radic. Biol. Med. 2009, 46, 1686–1693. [Google Scholar] [CrossRef] [PubMed]
- Fiesel, T.; Gaid, M.; Müller, A.; Bartels, J.; El-Awaad, I.; Beuerle, T.; Ernst, L.; Behrends, S.; Beerhues, L. Molecular cloning and characterization of a xanthone prenyltransferase from Hypericum calycinum cell cultures. Molecules 2015, 20, 15616–15630. [Google Scholar] [CrossRef] [PubMed]
- Nagia, M.; Gaid, M.; Biedermann, E.; Fiesel, T.; El-Awaad, I.; Hänsch, R.; Wittstock, U.; Beerhues, L. Sequential regiospecific gem-diprenylation of tetrahydroxyxanthone by prenyltransferases from Hypericum sp. New Phytol. 2018, 222, 318–334. [Google Scholar] [CrossRef] [PubMed]
- Booker, A.; Agapouda, A.; Frommenwiler, D.A.; Scotti, F.; Reich, E.; Heinrich, M. St John’s wort (Hypericum perforatum) products —An assessment of their authenticity and quality. Phytomedicine 2018, 40, 158–164. [Google Scholar] [CrossRef]
- Liu, Y.-R.; Li, W.-G.; Chen, L.-F.; Xiao, B.-K.; Yang, J.-Y.; Yang, L.; Zhang, C.-G.; Huang, R.-Q.; Dong, J.-X. ABTS+ scavenging potency of selected flavonols from Hypericum perforatum L. by HPLC-ESI/MS QQQ: Reaction observation, adduct characterization and scavenging activity determination. Food Res. Int. 2014, 58, 47–58. [Google Scholar] [CrossRef]
- Babula, P.; Klejdus, B.; Kovacik, J.; Hedbavny, J.; Hlavna, M. Lanthanum rather than cadmium induces oxidative stress and metabolite changes in Hypericum perforatum. J. Hazard. Mater. 2015, 286, 334–342. [Google Scholar] [CrossRef] [PubMed]
- Helmja, K.; Vaher, M.; Püssa, T.; Orav, A.; Viitak, A.; Levandi, T.; Kaljurand, M. Variation in the composition of the essential oils, phenolic compounds and mineral elements of Hypericum perforatum L. growing in Estonia. Nat. Prod. Res. 2011, 25, 496–510. [Google Scholar] [CrossRef] [PubMed]
- Coppock, R.W.; Dziwenka, M. St. John’s Wort, Nutraceuticals Efficacy Safe Toxicity; Elsevier Inc.: Amsterdam, The Netherlands, 2016; pp. 619–661. [Google Scholar]
- Sun, P.; Kang, T.; Xing, H.; Zhang, Z.; Yang, D.; Zhang, J.; Paré, P.W.; Li, M. Phytochemical Changes in Aerial Parts of Hypericum perforatum at Different Harvest Stages. Rec. Nat. Prod. 2019, 13, 1–9. [Google Scholar] [CrossRef]
- Owen, J.D.; Kirton, S.B.; Evans, S.J.; Stair, J.L. Elemental fingerprinting of Hypericum perforatum (St. John’s Wort) herb and preparations using ICP-OES and chemometrics. J. Pharm. Biomed. Anal. 2016, 125, 15–21. [Google Scholar] [CrossRef] [Green Version]
- Gîtea, D. Specii de Hypericum in Terapie; Editura Universităţii din Oradea: Oradea, Romania, 2015. [Google Scholar]
- Raclariu-Manolica, A.C.; Paltinean, R.; Vlase, L.; Labarre, A.; Manzanilla, V.; Ichim, M.C.; Crisan, G.; Brysting, A.K.; De Boer, H. Comparative authentication of Hypericum perforatum herbal products using DNA metabarcoding, TLC and HPLC-MS. Sci. Rep. 2017, 7, 1–12. [Google Scholar] [CrossRef]
Vegetal Material | Solvent | Compounds | Reference |
---|---|---|---|
H. perforatum aerial parts | 50% Aqueous ethanol | Quercetin derivatives (rutin, hyperoside, isoquercitrin, quercetrin), protocatechuic acid, (-)-epicatechin, I3, II8-biapigenin and chlorogenic acid derivatives, naphthodianthrones and phloroglucinols (hyperforin, adhyperforin, hypericin, pseudohypericin and furohyperforin | [20] |
H. perforatum, H. annula- tum aerial parts | 60% Aqueous ethanol | Hypericin, epicatechin, and rutin | [4] |
H. perforatum leaves | 80% Aqueous ethanol | Polysaccharides, hypericin, hyperforin, hyperoside, quercetin, quercitrin, rutin | [21,22] |
H. przewalskii aerial parts | 95% Aqueous ethanol, followed by partitioning between CH2Cl2, ethyl acetate and n-butanol | (±)-hyperzewalsins A-D | [23] |
H. perforatum aerial parts | 95% Aqueous ethanol, followed by partitioning between CH2Cl2, petroleum ether and acetone | Hyperforatins L-U | [24] |
H. perforatum aerial parts | 95% Aqueous ethanol, %, followed by partitioning between CH2Cl2, petroleum ether and acetone | Polycyclic polyprenylated acylphloroglucinols | [25] |
H. perforatum aerial parts/Hypericum spp. aerial parts | 96% Aqueous ethanol | Flavonoids and polyphenols: chlorogenic acid, rutin, hyperoside, quercetin, quercitrin | [10,26,27] |
Hypericum spp. aerial parts/flowers | Ethanol 100% | Naphthodianthrones, acylphloroglucinols, polyphenols and flavonoids: ex. hypericins (hypericin, pseudohypericin, protohypericin and protopseudohypericin), their presumed precursors (emodin and skyrin) and new skyrin derivatives (oxyskyrin, iridoskyrin, rubroskyrin and luteoskyrin) | [15,28,29,30,31,32,33,34] |
H. perforatum aerial parts | Ethyl acetate | Polyphenols, flavonoids | [28] |
H. perforatum aerial parts | Ethanol 100% followed by partitioning in a n-hexane- diethyl-ether gradient | Prenylated β-diketones: 2,6,9-trimethyl-8-decene-3,5-dione, 3,7,10-trimethyl-9-undecene-4,6-dione | [35] |
H. foliosum, H. androsaemum and H. perforatum aerial parts | Methanol 100%, followed by partitioning in diethylether and methanol | Quinic acid 3,4-dimethylbenzoic acid, (+) catechin, chlorogenic acid, quercetin-3-O-sulphate, miquelianin, amentoflavone | [36] |
H. perforatum aerial parts/Hypericum spp. leaves and stems | 70% Aqueous methanol | Phenolic acids (chlorogenic, caffeic, ferulic, cinnamic and gallic acid) and flavonoids (naringenin, apigenin, amentoflavone, kaempferol, kaempferol-3-O-glucoside, catechin, quercetin, rutin, hyperoside, quercitrin and isoquercetin) | [2,37,38] |
H. perforatum and H. annula- tum aerial parts | 80% Aqueous methanol | Chlorogenic acid, hyperoside, rutin, quercitroside, quercetin, epicatechin, hyperforin, hypericin | [4,39] |
Hypericum spp. aerial parts | Methanol 100% | Hypericin, epicatechin, and rutin Hypericin, pseudohypericin, hyperfsorin, adhyperforin, chlorogenic acid, neochlorogenic acid, hyperoside, isoquercitrin, quercitrin, quercetin, avicularin, rutin, (+)-catechin, and (-)-epicatechin, p-coumaric acid, gallic acid, quinic acid, chlorogenic acid, malic acid, protocatechuic acid, rutin, quercitrin, and isoquercitrin | [5,11,14,16,18,40,41,42,43,44,45,46,47,48] |
Hypericum spp. aerial parts | Methanol—acetone 1:1 | Chlorogenic acid, hyperoside, Isoquercitrin, rutin, isoquercitrin, quercitrin, hypericin, pseudohypericin, hyperforin and quercetin | [19] |
H. perforatum aerial parts | Ethanol—methanol 50:50, 30:70, and 70:30 | Hypericin | [49] |
H. perforatum aerial parts | Methanol 100%, followed by partitioning with petroleum ether-ethyl acetate | Hyperfols C-H | [50] |
H. hircinum, H. perforatum, H. scruglii aerial parts | 70% Aqueous methanol, MeOH-phosphate buffer, water | Shikimic acid, chlorogenic acid, quercetin and quercetin-7-O-glucoside, hyperoside, quercitrin, 3-geranyl-1-(2′-methylbutanoyl)- phloroglucinol, 3-geranyl-1-(2′-methylpropanoyl)-phloroglucinol | [51] |
Hypericum spp. leaves and stems | Methanol: ethanol: acetone 1:1:1 (v/v/v) | Anthraquinones and phloroglucinols | [2,37,52,53] |
H. calycinum cell suspension culture | Methanol 100%, followed by ethyl acetate | Xanthones | [54] |
H. perforatum aerial parts | Water | Flavonoids, hypericin, pseudohypericin | [55,56] |
H. perforatum aerial parts | 10% Aqueous glycerol | Caffeoyl- and p-coumaroyl-quinic acid derivatives and quercetin glycosides | [57] |
Hypericum spp. aerial parts | n-hexane | Phenolic compounds: uliginosin B, japonicin A, hyperbrasilol B, benzopyrans, cariphenone A, cariphenone B | [58,59,60,61] |
H. perforatum adventitious roots from auxin-induced root cultures | Petroleum ether | Hyperforins | [62] |
H. perforatum aerial parts | Fatty oils: medium-chain triglycerides, Arachis oil refined, soybean oil refined, almond oil, sunflower oil refined, sunflower oil refined, maize germ oil refined, macadamia nut oil refined, olive oil, sesame oil refined, Simmondsia chinensis seed oil | Quercetin, kaempferol, biapigenin, hyperforin, adhyperforin | [63] |
H. perforatum aerial parts | Olive oil, followed by DMSO (dimethyl sulfoxide) extraction | Quercetin, 4-hydroxyben- zoic acid, ferulic acid, kaempferol, p-coumaric acid, pinoresinol, protocate- chuic acid, vanillic acid, 2-hydroxycinnamic acid, 3.4-dihydroxyphenylacetic acid, 3-hydroxybenzoic acid, apigenin, luteolin, pyrocatechol, rosmarinic acid, sinapic acid, syringic acid and vanilin | [64,65] |
Hypericum spp. aerial parts | Chloroform: methanol 2:1 | Fatty acids | [66] |
H. perforatum aerial parts | Water | Essential oils | [67] |
Hypericum spp. aerial parts | Dichloromethane: methanol 1:1 | Phenolic acids, flavonols, biflavones, naphthodianthrones and phloroglucinols | [68] |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ion, V.; Ielciu, I.; Cârje, A.-G.; Muntean, D.L.; Crişan, G.; Păltinean, R. Hypericum spp.—An Overview of the Extraction Methods and Analysis of Compounds. Separations 2022, 9, 17. https://doi.org/10.3390/separations9010017
Ion V, Ielciu I, Cârje A-G, Muntean DL, Crişan G, Păltinean R. Hypericum spp.—An Overview of the Extraction Methods and Analysis of Compounds. Separations. 2022; 9(1):17. https://doi.org/10.3390/separations9010017
Chicago/Turabian StyleIon, Valentin, Irina Ielciu, Anca-Gabriela Cârje, Daniela Lucia Muntean, Gianina Crişan, and Ramona Păltinean. 2022. "Hypericum spp.—An Overview of the Extraction Methods and Analysis of Compounds" Separations 9, no. 1: 17. https://doi.org/10.3390/separations9010017
APA StyleIon, V., Ielciu, I., Cârje, A. -G., Muntean, D. L., Crişan, G., & Păltinean, R. (2022). Hypericum spp.—An Overview of the Extraction Methods and Analysis of Compounds. Separations, 9(1), 17. https://doi.org/10.3390/separations9010017