Cost-Effective Simultaneous Separation and Quantification of Phenolics in Green and Processed Tea Using HPLC–UV–ESI Single-Quadrupole MS Detector and Python Script
Abstract
:1. Introduction
2. Results and Discussion
2.1. HPLC-UV and MS1 Method Development
2.2. Validation of UV and MS1 Methods
2.3. Quantification of Commercial Tea Samples
2.4. Operational Cost Comparison
3. Materials and Methods
3.1. Chemicals and Reagents
3.2. Instrumentation and Analytical Conditions
3.3. Stock Solutions and Commercial Tea Sample Preparations
3.4. Method Validation
3.5. Post-Data Processing by Python Algorithm and Statistical Analyses
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
BTE | black tea of England |
C | (−)-catechin |
CG | (−)-catechin gallate |
DMSO | dimethyl sulfoxide |
EC | (−)-epicatechin |
ECG | (−)-epicatechin gallate |
EGC | (−)-epigallocatechin |
EGCG | (−)-epigallocatechin gallate |
ESI | electrospray ionization |
GA | gallic acid |
GC | (−)-gallocatechin |
GCG | (−)-gallocatechin gallate |
GTK | green tea of Korea |
GTT | green tea of Taiwan |
HPLC–UV–MS1 | high-performance liquid chromatography−ultraviolet−single-quadrupole mass spectrometry |
LOD | limit of detection |
LOQ | limit of quantification |
m/z | mass-to-charge |
OTT | oolong tea of Taiwan |
PTK | post-fermented tea of Korea |
QDa | quadrupole Dalton-based |
RSD | relative standard deviation |
TF | theaflavin |
TF3G | theaflavin-3-O-gallate |
TF3′G | theaflavin-3′-O-gallate |
TF3,3′DG | theaflavin-3,3′-O-digallate |
tR | retention time |
UPLC-Q-TOF/MS | ultra-performance liquid chromatography–quadrupole time-of-flight mass spectrometry |
References
- Hu, J.; Webster, D.; Cao, J.; Shao, A. The safety of green tea and green tea extract consumption in adults—Results of a systematic review. Regul. Toxicol. Pharmacol. 2018, 95, 412–433. [Google Scholar] [CrossRef] [PubMed]
- Lee, M.-K.; Kim, H.-W.; Lee, S.-H.; Kim, Y.J.; Asamenew, G.; Choi, J.; Lee, J.-W.; Jung, H.-A.; Yoo, S.M.; Kim, J.-B. Characterization of catechins, theaflavins, and flavonols by leaf processing step in green and black teas (Camellia sinensis) using UPLC-DAD-QToF/MS. Eur. Food Res. Technol. 2018, 245, 997–1010. [Google Scholar] [CrossRef] [Green Version]
- Zhao, C.N.; Tang, G.Y.; Cao, S.Y.; Xu, X.Y.; Gan, R.Y.; Liu, Q.; Mao, Q.Q.; Shang, A.; Li, H.B. Phenolic profiles and antioxidant activities of 30 tea infusions from green, black, oolong, white, yellow and dark teas. Antioxidants 2019, 8, 215. [Google Scholar] [CrossRef] [Green Version]
- Wolfram, S.; Wang, Y.; Thielecke, F. Anti-obesity effects of green tea: From bedside to bench. Mol. Nutr. Food Res. 2006, 50, 176–187. [Google Scholar] [CrossRef]
- Henning, S.M.; Niu, Y.; Lee, N.H.; Thames, G.D.; Minutti, R.R.; Wang, H.; Go, V.L.W.; Heber, D. Bioavailability and antioxidant activity of tea flavanols after consumption of green tea, black tea, or a green tea extract supplement. Am. J. Clin. Nutr. 2004, 80, 1558–1564. [Google Scholar] [CrossRef] [PubMed]
- Shin, C.M.; Lee, D.H.; Seo, A.Y.; Lee, H.J.; Kim, S.B.; Son, W.-C.; Kim, Y.K.; Lee, S.-J.; Park, S.-H.; Kim, N.; et al. Green tea extracts for the prevention of metachronous colorectal polyps among patients who underwent endoscopic removal of colorectal adenomas: A randomized clinical trial. Clin. Nutr. 2017, 37, 452–458. [Google Scholar] [CrossRef]
- Rha, C.-S.; Jeong, H.W.; Park, S.; Lee, S.; Jung, Y.S.; Kim, D.-O. Antioxidative, anti-inflammatory, and anticancer effects of purified flavonol glycosides and aglycones in green tea. Antioxidants 2019, 8, 278. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhang, Y.; Yu, Y.; Li, X.; Meguro, S.; Hayashi, S.; Katashima, M.; Yasumasu, T.; Wang, J.; Li, K. Effects of catechin-enriched green tea beverage on visceral fat loss in adults with a high proportion of visceral fat: A double-blind, placebo-controlled, randomized trial. J. Funct. Foods 2012, 4, 315–322. [Google Scholar] [CrossRef]
- Friedman, M. Overview of antibacterial, antitoxin, antiviral, and antifungal activities of tea flavonoids and teas. Mol. Nutr. Food Res. 2007, 51, 116–134. [Google Scholar] [CrossRef]
- Zhou, P.; Hu, O.; Fu, H.; Ouyang, L.; Gong, X.; Meng, P.; Wang, Z.; Dai, M.; Guo, X.; Wang, Y. UPLC-Q-TOF/MS-based untargeted metabolomics coupled with chemometrics approach for Tieguanyin tea with seasonal and year variations. Food Chem. 2019, 283, 73–82. [Google Scholar] [CrossRef]
- de Villiers, A.; Venter, P.; Pasch, H. Recent advances and trends in the liquid-chromatography-mass spectrometry analysis of flavonoids. J. Chromatogr. A 2016, 1430, 16–78. [Google Scholar] [CrossRef] [PubMed]
- Jiang, H.; Engelhardt, U.H.; Thräne, C.; Maiwald, B.; Stark, J. Determination of flavonol glycosides in green tea, oolong tea and black tea by UHPLC compared to HPLC. Food Chem. 2015, 183, 30–35. [Google Scholar] [CrossRef] [PubMed]
- Rha, C.-S.; Kim, S.-W.; Byoun, K.H.; Hong, Y.D.; Kim, D.-O. Simultaneous optimal production of flavonol aglycones and degalloylated catechins from green tea using a multi-function food-grade enzyme. Catalysts 2019, 9, 861. [Google Scholar] [CrossRef] [Green Version]
- Xu, J.; Hu, F.L.; Wang, W.; Wan, X.C.; Bao, G.H. Investigation on biochemical compositional changes during the microbial fermentation process of Fu brick tea by LC−MS based metabolomics. Food Chem. 2015, 186, 176–184. [Google Scholar] [CrossRef]
- Zhao, Y.; Chen, P.; Lin, L.; Harnly, J.M.; Yu, L.L.; Li, Z. Tentative identification, quantitation, and principal component analysis of green pu-erh, green, and white teas using UPLC/DAD/MS. Food Chem. 2011, 126, 1269–1277. [Google Scholar] [CrossRef] [Green Version]
- Liu, Z.; Bruins, M.E.; de Bruijn, W.J.C.; Vincken, J.-P. A comparison of the phenolic composition of old and young tea leaves reveals a decrease in flavanols and phenolic acids and an increase in flavonols upon tea leaf maturation. J. Food Compost. Anal. 2020, 86, 103385. [Google Scholar] [CrossRef]
- Tsujimura, M. On tea catechin isolated from green tea. Bull. Agric. Chem. Soc. Jpn. 1930, 6, 62–69. [Google Scholar] [CrossRef]
- Hoefler, A.C.; Coggon, P. Reversed-phase high-performance liquid chromatography of tea constituents. J. Chromatogr. A 1976, 129, 460–463. [Google Scholar] [CrossRef]
- Goto, T.; Yoshida, Y.; Kiso, M.; Nagashima, H. Simultaneous analysis of individual catechins and caffeine in green tea. J. Chromatogr. A 1996, 749, 295–299. [Google Scholar] [CrossRef]
- Šilarová, P.; Česlová, L.; Meloun, M. Fast gradient HPLC/MS separation of phenolics in green tea to monitor their degradation. Food Chem. 2017, 237, 471–480. [Google Scholar] [CrossRef]
- Mullard, G.; Allwood, J.W.; Weber, R.; Brown, M.; Begley, P.; Hollywood, K.A.; Jones, M.; Unwin, R.D.; Bishop, P.N.; Cooper, G.J.S.; et al. A new strategy for MS/MS data acquisition applying multiple data dependent experiments on Orbitrap mass spectrometers in non-targeted metabolomic applications. Metabolomics 2014, 11, 1068–1080. [Google Scholar] [CrossRef]
- Rha, C.-S.; Jung, Y.S.; Lee, J.-D.; Jang, D.; Kim, M.-S.; Lee, M.-S.; Hong, Y.D.; Kim, D.-O. Chemometric analysis of extracts and fractions from green, oxidized, and microbial fermented teas and their correlation to potential antioxidant and anticancer effects. Antioxidants 2020, 9, 1015. [Google Scholar] [CrossRef] [PubMed]
- Eidhammer, I.; Barsnes, H.; Eide, G.E.; Martens, L. Targeted quantification—Selected reaction monitoring. In Computational and Statistical Methods for Protein Quantification by Mass Spectrometry; John Wiley & Sons, Ltd.: Hoboken, NJ, USA, 2013; pp. 218–234. [Google Scholar] [CrossRef]
- Jang, D.; Jung, Y.S.; Kim, M.-S.; Oh, S.E.; Nam, T.G.; Kim, D.-O. Developing and validating a method for separating flavonoid isomers in common buckwheat sprouts using HPLC-PDA. Foods 2019, 8, 549. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ye, Y.; Yan, J.; Cui, J.; Mao, S.; Li, M.; Liao, X.; Tong, H. Dynamic changes in amino acids, catechins, caffeine and gallic acid in green tea during withering. J. Food Compost. Anal. 2018, 66, 98–108. [Google Scholar] [CrossRef]
- Tao, W.; Zhou, Z.; Zhao, B.; Wei, T. Simultaneous determination of eight catechins and four theaflavins in green, black and oolong tea using new HPLC-MS-MS method. J. Pharm. Biomed. Anal. 2016, 131, 140–145. [Google Scholar] [CrossRef]
- Bae, I.K.; Ham, H.M.; Jeong, M.H.; Kim, D.H.; Kim, H.J. Simultaneous determination of 15 phenolic compounds and caffeine in teas and mate using RP-HPLC/UV detection: Method development and optimization of extraction process. Food Chem. 2015, 172, 469–475. [Google Scholar] [CrossRef]
- Spáčil, Z.; Nováková, L.; Solich, P. Comparison of positive and negative ion detection of tea catechins using tandem mass spectrometry and ultra high performance liquid chromatography. Food Chem. 2010, 123, 535–541. [Google Scholar] [CrossRef]
- Yang, X.R.; Ye, C.X.; Xu, J.K.; Jiang, Y.M. Simultaneous analysis of purine alkaloids and catechins in Camellia sinensis, Camellia ptilophylla and Camellia assamica var. kucha by HPLC. Food Chem. 2007, 100, 1132–1136. [Google Scholar] [CrossRef]
- Svoboda, P.; Vlckova, H.; Novakova, L. Development and validation of UHPLC-MS/MS method for determination of eight naturally occurring catechin derivatives in various tea samples and the role of matrix effects. J. Pharm. Biomed. Anal. 2015, 114, 62–70. [Google Scholar] [CrossRef] [PubMed]
- Verloop, A.J.W.; Gruppen, H.; Bisschop, R.; Vincken, J.-P. Altering the phenolics profile of a green tea leaves extract using exogenous oxidases. Food Chem. 2015, 196, 1197–1206. [Google Scholar] [CrossRef]
Method a | Class b | Compound c | tRd (min) | LOD e (μg/L) | LOQ f (μg/L) | Linearity (R g) | Trueness h (Recovery% ± CI j) | Precision (RSD i; %) | |
---|---|---|---|---|---|---|---|---|---|
Intra-Day k | Inter-Day l | ||||||||
UV | PA | Gallic acid | 3.53 ± 0.01 | 5 ± 0 | 17 ± 0 | 0.9999 | 98.64 ± 0.36 | 0.46 | 2.31 |
F3L | GC | 5.47 ± 0.06 | 162 ± 12 | 539 ± 39 | 0.9999 | 98.28 ± 0.24 | 0.39 | 2.63 | |
F3L | EGC | 7.36 ± 0.04 | 20 ± 2 | 68 ± 6 | 0.9995 | 99.20 ± 0.36 | 0.59 | 2.97 | |
F3L | C | 8.03 ± 0.05 | 36 ± 1 | 120 ± 4 | 0.9998 | 99.27 ± 0.27 | 0.43 | 2.00 | |
AL | Caffeine | 8.58 ± 0.07 | 5 ± 1 | 16 ± 2 | 0.9999 | 99.13 ± 0.15 | 0.24 | 1.80 | |
F3L | EC | 9.62 ± 0.08 | 26 ± 2 | 86 ± 8 | 0.9999 | 99.16 ± 0.26 | 0.42 | 2.20 | |
F3L | EGCG | 10.09 ± 0.09 | 10 ± 1 | 32 ± 2 | 0.9999 | 98.80 ± 0.29 | 0.47 | 2.74 | |
F3L | GCG | 11.29 ± 0.12 | 16 ± 2 | 52 ± 5 | 0.9999 | 99.65 ± 0.42 | 0.69 | 2.16 | |
F3L | ECG | 17.10 ± 0.18 | 17 ± 4 | 56 ± 13 | 0.9998 | 98.77 ± 0.41 | 0.66 | 2.31 | |
FL | Rutin | 17.11 ± 0.20 | 47 ± 2 | 158 ± 9 | 0.9999 | 98.90 ± 0.50 | 0.82 | 1.99 | |
F3L | CG | 18.02 ± 0.15 | 15 ± 2 | 48 ± 6 | 0.9998 | 98.36 ± 0.40 | 0.66 | 2.38 | |
FL | Isoquercitrin | 18.26 ± 0.16 | 30 ± 7 | 99 ± 24 | 0.9999 | 99.31 ± 0.28 | 0.45 | 2.11 | |
FL | Myricetin | 24.12 ± 0.15 | 18 ± 2 | 61 ± 5 | 0.9998 | 97.23 ± 0.22 | 0.36 | 2.26 | |
TF | TF | 31.82 ± 0.24 | 22 ± 2 | 73 ± 5 | 0.9999 | 99.00 ± 0.25 | 0.41 | 3.00 | |
FL | Quercetin | 32.41 ± 0.20 | 38 ± 1 | 127 ± 5 | 0.9998 | 99.04 ± 0.14 | 0.24 | 2.49 | |
TF | TF3G | 35.03 ± 0.27 | 32 ± 4 | 107 ± 12 | 0.9999 | 98.84 ± 0.36 | 0.58 | 2.66 | |
TF | TF3′G | 36.98 ± 0.24 | 26 ± 6 | 85 ± 19 | 0.9999 | 98.85 ± 0.27 | 0.44 | 2.43 | |
TF | TF3,3′DG | 37.56 ± 0.24 | 22 ± 2 | 72 ± 8 | 0.9999 | 98.70 ± 0.35 | 0.58 | 2.18 | |
FL | Apigenin | 41.63 ± 0.24 | 61 ± 5 | 201 ± 16 | 0.9999 | 99.16 ± 0.40 | 0.65 | 1.89 | |
FL | Kaempferol | 42.99 ± 0.25 | 57 ± 2 | 191 ± 8 | 0.9997 | 98.43 ± 0.63 | 1.03 | 2.45 | |
MS1 | PA | Gallic acid | 3.44 ± 0.02 | 5 ± 0 | 19 ± 1 | 0.9983 | 98.99 ± 0.30 | 0.49 | 2.1 |
F3L | GC | 5.39 ± 0.06 | 23 ± 1 | 75 ± 4 | 0.9968 | 89.99 ± 0.63 | 1.13 | 6.3 | |
F3L | EGC | 7.28 ± 0.04 | 5 ± 1 | 18 ± 2 | 0.9921 | 110.89 ± 0.87 | 1.26 | 4.3 | |
F3L | C | 7.96 ± 0.05 | 6 ± 1 | 19 ± 1 | 0.9944 | 92.46 ± 3.01 | 5.26 | 12.9 | |
AL | Caffeine | 8.51 ± 0.06 | 8 ± 1 | 26 ± 3 | 0.9985 | 135.35 ± 0.96 | 1.14 | 16.7 | |
F3L | EC | 9.55 ± 0.08 | 8 ± 1 | 26 ± 5 | 0.9968 | 109.40 ± 0.19 | 0.28 | 5.3 | |
F3L | EGCG | 10.02 ± 0.09 | 9 ± 1 | 29 ± 3 | 0.9981 | 97.74 ± 0.44 | 0.73 | 17.2 | |
F3L | GCG | 11.21 ± 0.12 | 8 ± 1 | 26 ± 4 | 0.9975 | 99.10 ± 0.46 | 0.74 | 8.4 | |
F3L | ECG | 17.03 ± 0.16 | 47 ± 9 | 158 ± 30 | 0.9965 | 102.90 ± 1.03 | 1.62 | 5.1 | |
FL | Rutin | 17.04 ± 0.20 | 11 ± 2 | 35 ± 6 | 0.9901 | 104.03 ± 0.64 | 0.99 | 6.1 | |
F3L | CG | 17.94 ± 0.15 | 19 ± 3 | 65 ± 10 | 0.9985 | 106.77 ± 0.97 | 1.46 | 5.7 | |
FL | Isoquercitrin | 18.19 ± 0.15 | 7 ± 2 | 22 ± 5 | 0.9920 | 112.64 ± 1.10 | 1.58 | 7.2 | |
FL | Myricetin | 24.05 ± 0.15 | 11 ± 1 | 37 ± 5 | 0.9941 | 119.39 ± 1.35 | 1.83 | 24.6 | |
TF | TF | 31.74 ± 0.23 | 17 ± 1 | 56 ± 3 | 0.9949 | 104.39 ± 1.28 | 1.97 | 4.3 | |
FL | Quercetin | 32.34 ± 0.19 | 7 ± 1 | 24 ± 1 | 0.9922 | 112.54 ± 1.30 | 1.86 | 6.8 | |
TF | TF3G | 34.96 ± 0.26 | 46 ± 3 | 154 ± 10 | 0.9994 | 102.08 ± 1.29 | 2.04 | 2.7 | |
TF | TF3′G | 36.90 ± 0.24 | 25 ± 1 | 83 ± 4 | 0.9994 | 98.56 ± 1.00 | 1.64 | 4.9 | |
TF | TF3,3′DG | 37.49 ± 0.24 | 19 ± 2 | 65 ± 7 | 0.9992 | 134.22 ± 1.22 | 1.47 | 23.2 | |
FL | Apigenin | 41.56 ± 0.24 | 4 ± 0 | 13 ± 1 | 0.9719 | 83.56 ± 1.46 | 2.82 | 21.2 | |
FL | Kaempferol | 42.93 ± 0.25 | 12 ± 2 | 39 ± 7 | 0.9983 | 125.85 ± 2.73 | 3.50 | 19.5 |
Compound a | Tea Extract b | |||||||||
---|---|---|---|---|---|---|---|---|---|---|
GTT MeOH | GTT Water | GTK MeOH | GTK Water | OTT MeOH | OTT Water | PTK MeOH | PTK Water | BTE MeOH | BTE Water | |
Gallic acid | 0.48 ± 0.07d c | 0.51 ± 0.01d | 0.28 ± 0.04d | 0.28 ± 0.02d | 1.95 ± 0.04c | 1.91 ± 0.10c | 5.00 ± 0.32a | 4.50 ± 0.09b | 1.72 ± 0.17c | 1.84 ± 0.06c |
GC | n.d. d | 3.43 ± 0.25a | n.d. | 1.76 ± 0.08b | n.d. | n.d. | n.d. | 1.98 ± 0.22b # | n.d. | n.d. |
EGC | 27.27 ± 2.20ab | 23.19 ± 0.04ab | 28.68 ± 1.90a | 22.06 ± 1.01b | 8.28 ± 5.67c | 3.22 ± 1.25d | 4.77 ± 0.55cd | 5.69 ± 1.19cd | 2.40 ± 1.22d | 3.00 ± 0.20d |
C | n.d. | n.d. | n.d. | n.d. | n.d. | <LOQ e | 2.64 ± 0.52b | n.d. | 10.20 ± 2.79a | 8.83 ± 0.73a |
Caffeine | 24.88 ± 0.93c | 19.74 ± 0.55e | 26.40 ± 1.68bc | 20.85 ± 0.56de | 31.95 ± 0.72a | 24.18 ± 0.54cd | 32.64 ± 2.16a | 29.49 ± 0.49ab | 26.61 ± 3.31bc | 23.50 ± 0.29cde |
EC | 7.26 ± 0.63b | 6.54 ± 0.10b | 9.81 ± 0.49a | 7.86 ± 0.19b | 3.71 ± 0.78c | 1.64 ± 0.60d | 1.60 ± 0.30d | 1.61 ± 1.31d | 3.54 ± 1.49c | 1.79 ± 0.30d |
EGCG | 61.20 ± 0.36a | 22.80 ± 2.15b | 63.17 ± 4.14a | 15.35 ± 4.65c | 12.12 ± 0.52c | 1.94 ± 0.17d | 0.35 ± 0.02d # | n.d. | 2.80 ± 0.49d | n.d. |
GCG | <LOQ | <LOQ | n.d. | n.d. | n.d. | n.d. | n.d. | n.d. | n.d. | n.d. |
ECG | 15.51 ± 0.26a | 3.35 ± 0.59bc # | 13.92 ± 1.16a | n.d. | 5.83 ± 0.00b # | <LOQ | n.d. | n.d. | 4.78 ± 0.14b # | n.d. |
Rutin | 1.87 ± 0.08a | 1.51 ± 0.04a | n.d. | n.d. | 0.86 ± 0.09b | 0.68 ± 0.06b | n.d. | n.d. | 1.83 ± 0.43a | 1.77 ± 0.06a |
Isoquercitrin | 0.92 ± 0.12b | 0.72 ± 0.03bc # | n.d. | n.d. | 0.35 ± 0.01cd # | 0.24 ± 0.06d | n.d. | n.d. | 1.22 ± 0.22a | 1.06 ± 0.10ab # |
TF | n.d. | n.d. | n.d. | n.d. | 0.73 ± 0.05b | n.d. | n.d. | n.d. | 2.63 ± 0.39a | n.d. |
TF3G | n.d. | n.d. | n.d. | n.d. | 1.65 ± 0.04b | n.d. | n.d. | n.d. | 5.04 ± 1.15a | n.d. |
TF3′G | n.d. | n.d. | n.d. | n.d. | 0.61 ± 0.00b | n.d. | n.d. | n.d. | 1.97 ± 0.39a | n.d. |
TF3,3′DG | n.d. | n.d. | n.d. | n.d. | 1.23 ± 0.44b | n.d. | n.d. | n.d. | 2.83 ± 0.90a | n.d. |
Apigenin | <LOQ | n.d. | n.d. | n.d. | <LOQ | n.d. | n.d. | n.d. | n.d. | n.d. |
Class | Compound | UV | MS1 | |||||
---|---|---|---|---|---|---|---|---|
tRa (min) | Wavelength (nm) | tR (min) | SIR b Window (min) | m/z (Polarity c) | Cone Voltage (V) | |||
PA | Gallic acid | 3.53 | 275 | 3.44 | 2.5−4.5 | 169.02 (−) | 10 | |
F3L | GC | 5.47 | 275 | 5.39 | 4.5−8.0 | 305.07 (−) | 10 | |
F3L | EGC | 7.36 | 275 | 7.28 | 4.5−8.0 | 305.07 (−) | 10 | |
F3L | C | 8.03 | 275 | 7.96 | 7.0−10.5 | 289.08 (−) | 10 | |
AL | Caffeine | 8.58 | 275 | 8.51 | 5.0−10.0 | 195.08 (+) | 5 | |
F3L | EC | 9.62 | 275 | 9.55 | 7.0−10.5 | 289.08 (−) | 10 | |
F3L | EGCG | 10.09 | 275 | 10.02 | 9.0−12.0 | 457.08 (−) | 10 | |
F3L | GCG | 11.29 | 275 | 11.21 | 9.0−12.0 | 457.08 (−) | 10 | |
F3L | ECG | 17.10 | 275 | 17.03 | 16.0−19.0 | 441.09 (−) | 10 | |
FL | Rutin | 17.11 | 365 | 17.04 | 16.0−18.0 | 609.15 (−) | 15 | |
F3L | CG | 18.02 | 275 | 17.94 | 16.0−19.0 | 441.09 (−) | 10 | |
FL | Isoquercitrin | 18.26 | 365 | 18.19 | 17.0−19.0 | 463.10 (−) | 15 | |
FL | Myricetin | 24.12 | 365 | 24.05 | 23.0−25.0 | 317.04 (−) | 15 | |
TF | TF | 31.82 | 275 | 31.74 | 30.5−33.0 | 563.13 (−) | 15 | |
FL | Quercetin | 32.41 | 365 | 32.34 | 31.0−33.5 | 301.04 (−) | 15 | |
TF | TF3G | 35.03 | 275 | 34.96 | 33.5−38.0 | 715.14 (−) | 15 | |
TF | TF3′G | 36.98 | 275 | 36.90 | 33.5−38.0 | 715.14 (−) | 15 | |
TF | TF3,3′DG | 37.56 | 275 | 37.49 | 36.0−38.5 | 867.15 (−) | 15 | |
FL | Apigenin | 41.63 | 365 | 41.56 | 40.5−43.0 | 269.05 (−) | 15 | |
FL | Kaempferol | 42.99 | 365 | 42.93 | 42.0−45.0 | 285.05 (−) | 15 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Rha, C.-S.; Choi, Y.-M.; Kim, J.-C.; Kim, D.-O. Cost-Effective Simultaneous Separation and Quantification of Phenolics in Green and Processed Tea Using HPLC–UV–ESI Single-Quadrupole MS Detector and Python Script. Separations 2021, 8, 45. https://doi.org/10.3390/separations8040045
Rha C-S, Choi Y-M, Kim J-C, Kim D-O. Cost-Effective Simultaneous Separation and Quantification of Phenolics in Green and Processed Tea Using HPLC–UV–ESI Single-Quadrupole MS Detector and Python Script. Separations. 2021; 8(4):45. https://doi.org/10.3390/separations8040045
Chicago/Turabian StyleRha, Chan-Su, Yun-Mi Choi, Jong-Chan Kim, and Dae-Ok Kim. 2021. "Cost-Effective Simultaneous Separation and Quantification of Phenolics in Green and Processed Tea Using HPLC–UV–ESI Single-Quadrupole MS Detector and Python Script" Separations 8, no. 4: 45. https://doi.org/10.3390/separations8040045
APA StyleRha, C. -S., Choi, Y. -M., Kim, J. -C., & Kim, D. -O. (2021). Cost-Effective Simultaneous Separation and Quantification of Phenolics in Green and Processed Tea Using HPLC–UV–ESI Single-Quadrupole MS Detector and Python Script. Separations, 8(4), 45. https://doi.org/10.3390/separations8040045