A Study on the Reaction Kinetics of Anaerobic Microbes Using Batch Anaerobic Sludge Technique for Beverage Industrial Wastewater
Abstract
:1. Introduction
2. Material and Methods
2.1. Sample Preparation
2.2. Experimental Design
2.3. Characterization of Beverage Industry Wastewater
2.4. Gram Staining & Catalase Test
2.5. Kinetic Modeling
2.5.1. Microbial Growth Kinetics
2.5.2. Degradation of Organic Matter and Kinetic Analysis
2.5.3. Solid Retention Time SRT
3. Result and Discussion
3.1. Microbiology of Beverage Industrial Effluent Using Gram Staining and Catalase Test
3.2. Kinetic Modeling
3.2.1. Microbial Growth Rate
3.2.2. Characterization of Beverage Industry Wastewater
3.2.3. Degradation of Organic Matter and Kinetic Analysis
3.2.4. Solids Retention Time (SRT)
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Murtaza, G.; Zia, M.H. Wastewater Production, Treatment and Use in Pakistan. Available online: https://www.ais.uwater.org/ais/pluginfile.php/232/mod_page/content/128/pakistan_murtaza_finalcountryreport2012.pdf (accessed on 1 March 2021).
- Abdelfattah, A.; Hossain, M.I.; Cheng, L. High-strength wastewater treatment using microbial biofilm reactor: A critical review. World J. Microbiol. Biotechnol. 2020, 36, 1–10. [Google Scholar] [CrossRef] [PubMed]
- Foods, I.C.o.M.S.F. Microbial Ecology of Food Commodities; Aspen Publishers: New York, NY, USA, 1998; Volume 6. [Google Scholar]
- Ortiz-Solá, J.; Viñas, I.; Colás-Medà, P.; Anguera, M.; Abadias, M. Occurrence of selected viral and bacterial pathogens and microbiological quality of fresh and frozen strawberries sold in Spain. Int. J. Food Microbiol. 2020, 314, 108392. [Google Scholar] [CrossRef]
- Chen, H.; Zhang, H.; Tian, J.; Shi, J.; Linhardt, R.J.; Ye, T.D.X.; Chen, S. Recovery of High Value-Added Nutrients from Fruit and Vegetable Industrial Wastewater. Compr. Rev. Food Sci. Food Saf. 2019, 18, 1388–1402. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Valta, K.; Kosanovic, T.; Malamis, D.; Moustakas, K.; Loizidou, M. Overview of water usage and wastewater management in the food and beverage industry. Desalination Water Treat. 2015, 53, 3335–3347. [Google Scholar] [CrossRef]
- Raza, W.; Kukkar, D.; Saulat, H.; Raza, N.; Azam, M.; Mehmood, A.; Kim, K.-H. Metal-organic frameworks as an emerging tool for sensing various targets in aqueous and biological media. TrAC Trends Anal. Chem. 2019, 120, 115654. [Google Scholar] [CrossRef]
- Wawrzkiewicz, M.; Hubicki, Z. Anion exchange resins as effective sorbents for removal of acid, reactive, and direct dyes from textile wastewaters. Ion Exch. Stud. Appl. 2015, 37–72. [Google Scholar] [CrossRef] [Green Version]
- Yao, L.; Zhang, L.; Wang, R.; Chou, S.; Dong, Z. A new integrated approach for dye removal from wastewater by polyoxometalates functionalized membranes. J. Hazard. Mater. 2016, 301, 462–470. [Google Scholar] [CrossRef]
- He, H.; Chen, Y.; Li, X.; Cheng, Y.; Yang, C.; Zeng, G. Influence of salinity on microorganisms in activated sludge processes: A review. Int. Biodeterior. Biodegrad. 2017, 119, 520–527. [Google Scholar] [CrossRef]
- Franchi, O.; Cabrol, L.; Chamy, R.; Rosenkranz, F. Correlations between microbial population dynamics, bamA gene abundance and performance of anaerobic sequencing batch reactor (ASBR) treating increasing concentrations of phenol. J. Biotechnol. 2020, 310, 40–48. [Google Scholar] [CrossRef]
- Gebara, F. Activated sludge biofilm wastewater treatment system. Water Res. 1999, 33, 230–238. [Google Scholar] [CrossRef]
- Waqas, S.; Bilad, M.R.; Man, Z.; Wibisono, Y.; Jaafar, J.; Mahlia, T.M.I.; Khan, A.L.; Aslam, M. Recent progress in integrated fixed-film activated sludge process for wastewater treatment: A review. J. Environ. Manag. 2020, 268, 110718. [Google Scholar] [CrossRef]
- Bozkurt, Y.C.; Apul, O.G. Critical review for microwave pretreatment of waste-activated sludge prior to anaerobic digestion. Curr. Opin. Environ. Sci. Health 2020, 14, 1–9. [Google Scholar] [CrossRef]
- Helbling, D.E.; Johnson, D.R.; Honti, M.; Fenner, K. Micropollutant biotransformation kinetics associate with WWTP process parameters and microbial community characteristics. Environ. Sci. Technol. 2012, 46, 10579–10588. [Google Scholar] [CrossRef] [PubMed]
- Cheng, D.; Ngo, H.H.; Guo, W.; Chang, S.W.; Nguyen, D.D.; Liu, Y.; Shan, X.; Nghiem, L.D.; Nguyen, L.N. Removal process of antibiotics during anaerobic treatment of swine wastewater. Bioresour. Technol. 2020, 300, 122707. [Google Scholar] [CrossRef] [PubMed]
- Lim, M.; Patureau, D.; Heran, M.; Lesage, G.; Kim, J. Removal of organic micropollutants in anaerobic membrane bioreactors in wastewater treatment: Critical review. Environ. Sci. Water Res. Technol. 2020, 6, 1230–1243. [Google Scholar] [CrossRef]
- Ibrahim, A.K.C. Kinetic Parameter Studies of Activated Sludge Process For Anaerobic Pre-Treated Palm Oil Mill Effluent [TD756. 45. A286 2007 f rb]; Universiti Sains Malaysia: Penang, Malaysia, 2007. [Google Scholar]
- Bevilacqua, A.; Corbo, M.R.; Campaniello, D.; D’Amato, D.; Gallo, M.; Speranza, B.; Sinigaglia, M.G.R. Shelf life prolongation of fruit juices through essential oils and homogenization: A review. In Science Against Microbial Pathogens: Communicating Current Research and Technological Advances; Formatex Research Centre: Badajoz, Spain, 2011; pp. 1157–1166. [Google Scholar]
- Maksimović, Z.; De la Fe, C.; Rifatbegović, M. Assessment of in vitro growth characteristics of Mycoplasma ovipneumoniae. Rev. Sci. Tech. Off. Int. Epiz 2020, 39, 2. [Google Scholar]
- Peng, X.; Cao, J.; Xie, B.; Duan, M.; Zhao, J. Evaluation of degradation behavior over tetracycline hydrochloride by microbial electrochemical technology: Performance, kinetics, and microbial communities. Ecotoxicol. Environ. Saf. 2020, 188, 109869. [Google Scholar] [CrossRef]
- Lotti, T. Developing Anammox for mainstream municipal wastewater treatment. Appl. Microbiol. Biotechnol. 2016, 101, 1365–1383. [Google Scholar]
- Chopra, S.; Kumar, D. Characterization, optimization and kinetic study of diclofenac degradation by novel bacterial strains and their synthetic consortia. Bioremediation J. 2020, 24, 150–170. [Google Scholar] [CrossRef]
- Maaroff, R.M.; Jahim, J.M.; Azahar, A.M.; Abdul, P.M.; Masdar, M.S.; Nordin, D.; Abd Nasir, M.A. Biohydrogen production from palm oil mill effluent (POME) by two stage anaerobic sequencing batch reactor (ASBR) system for better utilization of carbon sources in POME. Int. J. Hydrog. Energy 2019, 44, 3395–3406. [Google Scholar] [CrossRef]
- Pronk, M.; De Kreuk, M.; De Bruin, B.; Kamminga, P.; Kleerebezem, R.v.; Van Loosdrecht, M. Full scale performance of the aerobic granular sludge process for sewage treatment. Water Res. 2015, 84, 207–217. [Google Scholar] [CrossRef]
- Gurung, K.; Ncibi, M.C.; Fontmorin, J.-M.; Särkkä, H.; Sillanpää, M. Incorporating submerged MBR in conventional activated sludge process for municipal wastewater treatment: A feasibility and performance assessment. J. Membr. Sci. Technol. 2016, 6, 3. [Google Scholar] [CrossRef] [Green Version]
- Tawfik, A.; El-Kamah, H. Treatment of fruit-juice industry wastewater in a two-stage anaerobic hybrid (AH) reactor system followed by a sequencing batch reactor (SBR). Environ. Technol. 2012, 33, 429–436. [Google Scholar] [CrossRef] [PubMed]
- Yuan, C.; Wang, B.; Peng, Y.; Li, X.; Zhang, Q.; Hu, T. Enhanced nutrient removal of simultaneous partial nitrification, denitrification and phosphorus removal (SPNDPR) in a single-stage anaerobic/micro-aerobic sequencing batch reactor for treating real sewage with low carbon/nitrogen. Chemosphere 2020, 257, 127097. [Google Scholar] [CrossRef]
Type of Bacteria | Genus and Species |
---|---|
Gram-negative bacteria | Campylobacter coli (C. coli) |
Escherichia coli (E.coli) | |
Pseudomonas | |
Salmonella spp. | |
Shigella spp. | |
Vibrio cholera | |
Gram-positive bacteria | Lactic acid bacteria |
Streptococcus | |
Staphylococcus |
Dilutions | Number of Colonies on EMB Agar | Number of Colonies on Nutrient Agar | Number of Colonies on McConkey Agar |
---|---|---|---|
103 | 186 | 144 | 48 |
104 | 134 | 120 | 32 |
105 | 40 | 60 | 14 |
106 | 28 | 45 | 9 |
Agars | No. of Dilutions | Number of Colonies × Dilution Factor | CFU/mL = Number of Colonies × Dilution Factor/Volume of Culture Plate | Log10(CFU) | Adj. R-Square R2 |
---|---|---|---|---|---|
103 | 7.44 × 105 | 744 | 5.87 | 0.9976 | |
EMB | 104 | 4.8 × 106 | 480 | 6.68 | |
105 | 2.4 × 107 | 240 | 7.38 | ||
106 | 1.86 × 108 | 186 | 8.26 | ||
103 | 5.76 × 105 | 576 | 5.76 | 0.97884 | |
Nutrient | 104 | 5.36 × 106 | 536 | 6.72 | |
105 | 1.6 × 107 | 160 | 7.204 | ||
106 | 1.24 × 108 | 124 | 8.093 | ||
MacConkey | 103 | 4.8 × 104 | 48 | 4.68 | 0.99637 |
104 | 3.2 × 105 | 32 | 5.505 | ||
105 | 14 × 106 | 14 | 6.14 | ||
106 | 9.0 × 107 | 9 | 6.95 |
Characteristics | COD mg/L | pH | BOD mg/L | Color | VSS mg/L |
---|---|---|---|---|---|
80,000 | 4.5 | 58,000 | Orange | 11,656 |
Time | Removal of COD | Substrate Uptake | Efficiency | SRT |
---|---|---|---|---|
Days | mg/L | Day−1 | % | Days |
1 | 80,000 | 0 | 0 | 2.5 |
3 | 64,600 | 0.105 | 19.25 | 2.767 |
5 | 50,800 | 0.206 | 37.5 | 3.058 |
7 | 36,800 | 0.296 | 54 | 3.425 |
9 | 28,500 | 0.354 | 64.3 | 3.687 |
11 | 10,800 | 0.472 | 87.5 | 4.405 |
13 | 550 | 0.546 | 99.31 | 4.965 |
Kinetic Constant | Units | Value |
---|---|---|
KS | mg/L COD | 3500 |
Μ | L/h | 0.03833 |
μm | L/h | 0.03672 |
K | mg/L COD | 0.0066 |
k | ----- | 0.0437 |
Y | mg VSS/mg COD | 0.46 |
Order | Reactor Type | Wastewater | pH | Temperature °C | COD mg/L | MLSS mg/L | HRT h | SRT Days | COD Removal% | References |
---|---|---|---|---|---|---|---|---|---|---|
1 | Two-stage anaerobic batch reactor | palm oil mill effluent | 4.3 | 37–57 | 8600 | 4100 | 12 | 20 | 90 | [24] |
2 | Aerobic granular sludge | Sewage wastewater | --- | 20 | 1436 | 8000 | 17 | 20–38 | 63 | [25] |
3 | Conventional | Municipal Wastewater | 6.5–7.4 | 9–16 | 520–850 | 220–720 | 12 | 28 | 99 | [26] |
anaerobic sludge process | ||||||||||
4 | Two-stage anaerobic hybrid | Fruit juice industrial wastewater | 7.5 | 26 | 4980 | 131 | 31 | ----- | 99 | [27] |
5 | Single-stage anaerobic batch reactor | Beverage industrial wastewater | 4.5 | 20–25 | 80,000 | 11,656 | 13 | 26 | 99.31 | This work |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Um-e-Habiba; Khan, M.S.; Raza, W.; Gul, H.; Hussain, M.; Malik, B.; Azam, M.; Winter, F. A Study on the Reaction Kinetics of Anaerobic Microbes Using Batch Anaerobic Sludge Technique for Beverage Industrial Wastewater. Separations 2021, 8, 43. https://doi.org/10.3390/separations8040043
Um-e-Habiba, Khan MS, Raza W, Gul H, Hussain M, Malik B, Azam M, Winter F. A Study on the Reaction Kinetics of Anaerobic Microbes Using Batch Anaerobic Sludge Technique for Beverage Industrial Wastewater. Separations. 2021; 8(4):43. https://doi.org/10.3390/separations8040043
Chicago/Turabian StyleUm-e-Habiba, Muhammad Saleem Khan, Waseem Raza, Hajera Gul, Maham Hussain, Barizah Malik, Mudassar Azam, and Franz Winter. 2021. "A Study on the Reaction Kinetics of Anaerobic Microbes Using Batch Anaerobic Sludge Technique for Beverage Industrial Wastewater" Separations 8, no. 4: 43. https://doi.org/10.3390/separations8040043
APA StyleUm-e-Habiba, Khan, M. S., Raza, W., Gul, H., Hussain, M., Malik, B., Azam, M., & Winter, F. (2021). A Study on the Reaction Kinetics of Anaerobic Microbes Using Batch Anaerobic Sludge Technique for Beverage Industrial Wastewater. Separations, 8(4), 43. https://doi.org/10.3390/separations8040043