The Role of Ionic Liquid Interaction in the Separation of Fatty Acid Methyl Esters—Polyunsaturated Geometric Isomers in GC–MS
Abstract
:1. Introduction
2. Materials and Methods
2.1. Chemicals and GC Columns
2.2. GC–MS Analysis
2.3. Validation Procedure
2.4. Molecular Modeling
3. Results
3.1. Retention Behavior of Fatty Acid Methyl Esters
3.2. Evaluation of the Chromatograms
3.3. Ionic Liquid–FAME Interactions
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Conflicts of Interest
References
- Calder, P.C. Polyunsaturated fatty acids and inflammation and immunity. In Shock; Lippincott Williams & Wilkins: Philadelphia, PA, USA, 2004; Volume 21, p. 123. [Google Scholar] [CrossRef]
- Landgraf-Leurs, M.M.; Drummer, C.; Fröschl, H.; Steinhuber, R.; von Schacky, C.; Landgraf, R. Pilot study on omega-3 fatty acids in type I diabetes mellitus. Diabetes 1990, 39, 369–375. [Google Scholar] [CrossRef]
- Endo, J.; Arita, M. Cardioprotective mechanism of omega-3 polyunsaturated fatty acids. J. Cardiol. 2016, 67, 22–27. [Google Scholar] [CrossRef] [Green Version]
- Griinari, J.; Corl, B.; Lacy, S.; Chouinard, P.; Nurmela, K.; Bauman, D. Conjugated linoleic acid is synthesized endogenously in lactating dairy cows by Δ9-desaturase. J. Nutr. 2000, 130, 2285–2291. [Google Scholar] [CrossRef] [PubMed]
- Delmonte, P.; Fardin-Kia, A.R.; Kramer, J.K.; Mossoba, M.M.; Sidisky, L.; Tyburczy, C.; Rader, J.I. Evaluation of highly polar ionic liquid gas chromatographic column for the determination of the fatty acids in milk fat. J. Chromatogr. A 2012, 1233, 137–146. [Google Scholar] [CrossRef] [PubMed]
- Delmonte, P.; Kia, A.; Kramer, J.; Mossoba, M.; Sidisky, L.; Rader, J. Separation characteristics of fatty acid methyl esters using SLB-IL111, a new ionic liquid coated capillary gas chromatographic column. J. Chromatogr. A 2011, 1218, 545–554. [Google Scholar] [CrossRef] [PubMed]
- Ratnayake, W.; Pelletier, G. Positional and geometrical-isomers of linoleic-acid in partially hydrogenated oils. J. Am. Oil Chem. Soc. 1992, 69, 95–105. [Google Scholar] [CrossRef]
- David, F.; Sandra, P.; Vickers, A.K. Column selection for the analysis of fatty acid methyl esters. Agil. Technol. 2005, 19, 19. [Google Scholar]
- Hartig, C. Rapid identification of fatty acid methyl esters using a multidimensional gas chromatography-mass spectrometry database. J. Chromatogr. A 2008, 1177, 159–169. [Google Scholar] [CrossRef] [PubMed]
- He, L.; Prodhan, M.; Yuan, F.; Yin, X.; Lorkiewicz, P.; Wei, X.; Feng, W.; McClain, C.; Zhang, X. Simultaneous quantification of straight-chain and branched-chain short chain fatty acids by gas chromatography mass spectrometry. J. Chromatogr. B 2018, 1092, 359–367. [Google Scholar] [CrossRef] [PubMed]
- Fanali, C.; Micalizzi, G.; Dugo, P.; Mondello, L. Ionic liquids as stationary phases for fatty acid analysis by gas chromatography. Analyst 2017, 142, 4601–4612. [Google Scholar] [CrossRef] [PubMed]
- Gomez-Cortes, P.; Rodriguez-Pino, V.; Juarez, M.; de La Fuente, M. Optimization of milk odd and branched-chain fatty acids analysis by gas chromatography using an extremely polar stationary phase. Food Chem. 2017, 231, 11–18. [Google Scholar] [CrossRef] [PubMed]
- Yurchenko, S.; Sats, A.; Tatar, V.; Kaart, T.; Mootse, H.; Joudu, I. Fatty acid profile of milk from Saanen and Swedish Landrace goats. Food Chem. 2018, 254, 326–332. [Google Scholar] [CrossRef] [PubMed]
- Gomez-Cortes, P.; Brenna, J.; Lawrence, P.; de La Fuente, M. Novel characterisation of minor alpha-linolenic acid isomers in linseed oil by gas chromatography and covalent adduct chemical ionisation tandem mass spectrometry. Food Chem. 2016, 200, 141–145. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Fardin-Kia, A.; Delmonte, P.; Kramer, J.; Jahreis, G.; Kuhnt, K.; Santercole, V.; Rader, J. Separation of the Fatty Acids in Menhaden Oil as Methyl Esters with a Highly Polar Ionic Liquid Gas Chromatographic Column and Identification by Time of Flight Mass spectrometry. Lipids 2013, 48, 1279–1295. [Google Scholar] [CrossRef] [PubMed]
- Guo, Q.; Jiang, F.; Jin, J.; Li, Q.; Wang, F.; Wang, Q.; Ha, Y. Highly sensitive method for the quantification of trans-linolenic acid isomers in trilinolenin of edible oils using an ionic liquid capillary column. J. Sci. Food Agric. 2017, 97, 4697–4703. [Google Scholar] [CrossRef]
- Tyburczy, C.; Delmonte, P.; Fardin-Kia, A.; Mossoba, M.; Kramer, J.; Rader, J. Profile of trans Fatty Acids (FAs) Including Trans Polyunsaturated FAs in Representative Fast Food Samples. J. Agric. Food Chem. 2012, 60, 4567–4577. [Google Scholar] [CrossRef]
- Zeng, A.; Chin, S.; Nolvachai, Y.; Kulsing, C.; Sidisky, L.; Marriott, P. Characterisation of capillary ionic liquid columns for gas chromatography-mass spectrometry analysis of fatty acid methyl esters. Anal. Chim. Acta 2013, 803, 166–173. [Google Scholar] [CrossRef]
- Zuchowska-Grzywacz, M.; Kowalska, M. Trans Fatty Acids in food—Current legal regulations as protections for consumers and food manufacturers. Acta Aliment. 2019, 48, 105–114. [Google Scholar] [CrossRef]
- Baylin, A.; Kabagambe, E.K.; Siles, X.; Campos, H. Adipose tissue biomarkers of fatty acid intake. Am. J. Clin. Nutr. 2002, 76, 750–757. [Google Scholar] [CrossRef] [Green Version]
- Nu-Check-Prep, Inc. Available online: http://www.nu-chekprep.com/catalog.pdf (accessed on 23 January 2021).
- Dodds, E.D.; McCoy, M.R.; Rea, L.D.; Kennish, J.M. Gas chromatographic quantification of fatty acid methyl esters: Flame ionization detection vs. electron impact mass spectrometry. Lipids 2005, 40, 419–428. [Google Scholar] [CrossRef]
- Taverniers, I.; de Loose, M.; van Bockstaele, E. Trends in quality in the analytical laboratory. II. Analytical method validation and quality assurance. Trends Anal. Chem. 2004, 23, 535–552. [Google Scholar] [CrossRef]
- Allinger, N.L. Conformational-analysis. 130. MM2—Hydrocarbon force-field utilizing V1 and V2 torsional terms. J. Am. Chem. Soc. 1977, 99, 8127–8134. [Google Scholar] [CrossRef]
- Harynuk, J.; Wynne, P.M.; Marriott, P.J. Evaluation of new stationary phases for the separation of fatty acid methyl esters. Chromatographia 2006, 63, S61–S66. [Google Scholar] [CrossRef]
- Takamuku, T.; Tokuda, T.; Uchida, T.; Sonoda, K.; Marekha, B.; Idrissi, A.; Takahashi, O.; Horikawa, Y.; Matsumura, J.; Tokushima, T.; et al. Hydrogen bonds of the imidazolium rings of ionic liquids with DMSO studied by NMR, soft X-ray spectroscopy, and SANS. Phys. Chem. Chem. Phys. 2018, 20, 12858–12869. [Google Scholar] [CrossRef]
- Roy, S.; Mandal, S.; Banerjee, P.; Sarkar, N. Modification of fatty acid vesicle using an imidazolium-based surface active ionic liquid: A detailed study on its modified properties using spectroscopy and microscopy techniques. J. Chem. Sci. 2018, 130. [Google Scholar] [CrossRef] [Green Version]
- Zhang, Q.; Wang, N.; Yu, Z. The Hydrogen Bonding Interactions between the Ionic Liquid 1-Ethyl-3-Methylimidazolium Ethyl Sulfate and Water. J. Phys. Chem. B 2010, 114, 4747–4754. [Google Scholar] [CrossRef] [PubMed]
- Dong, K.; Zhang, S.; Wang, D.; Yao, X. Hydrogen bonds in imidazolium ionic liquids. J. Phys. Chem. A 2006, 110, 9775–9782. [Google Scholar] [CrossRef]
- Corazzin, M.; Romanzin, A.; Sepulcri, A.; Pinosa, M.; Piasentier, E.; Bovolenta, S. Fatty Acid Profiles of Cow’s Milk and Cheese as Affected by Mountain Pasture Type and Concentrate Supplementation. Animals 2019, 9, 68. [Google Scholar] [CrossRef] [Green Version]
- Schlormann, W.; Birringer, M.; Lochner, A.; Lorkowski, S.; Richter, I.; Rohrer, C.; Glei, M. In vitro fermentation of nuts results in the formation of butyrate and c9, t11 conjugated linoleic acid as chemopreventive metabolites. Eur. J. Nutr. 2016, 55, 2063–2073. [Google Scholar] [CrossRef]
- Halmemies-Beauchet-Filleau, A.; Vanhatalo, A.; Toivonen, V.; Heikkila, T.; Lee, M.R.; Shingfield, K.J. Effect of replacing grass silage with red clover silage on nutrient digestion, nitrogen metabolism, and milk fat composition in lactating cows fed diets containing a 60:40 forage-to-concentrate ratio. J. Dairy Sci. 2014, 97, 3761–3776. [Google Scholar] [CrossRef] [Green Version]
- Enjalbert, F.; Videau, Y.; Nicot, M.C.; Troegeler-Meynadier, A. Effects of induced subacute ruminal acidosis on milk fat content and milk fatty acid profile. J. Anim. Physiol. Anim. Nutr. 2008, 92, 284–291. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Szabo, E.; Boehm, G.; Beermann, C.; Weyermann, M.; Brenner, H.; Rothenbacher, D.; Decsi, T. trans Octadecenoic acid and trans octadecadienoic acid are inversely related to long-chain polyunsaturates in human milk: Results of a large birth cohort study. Am. J. Clin. Nutr. 2007, 85, 1320–1326. [Google Scholar] [CrossRef]
- Szabo, E.; Boehm, G.; Beermann, C.; Weyermann, M.; Brenner, H.; Rothenbacher, D.; Decsi, T. Fatty acid profile comparisons in human milk sampled from the same mothers at the sixth week and the sixth month of lactation. J. Pediatr. Gastroenterol. Nutr. 2010, 50, 316–320. [Google Scholar] [CrossRef] [PubMed]
- Zanferari, F.; Vendramini, T.H.A.; Rentas, M.F.; Gardinal, R.; Calomeni, G.D.; Mesquita, L.G.; Takiya, C.S.; Renno, F.P. Effects of chitosan and whole raw soybeans on ruminal fermentation and bacterial populations, and milk fatty acid profile in dairy cows. J. Dairy Sci. 2018, 101, 10939–10952. [Google Scholar] [CrossRef] [PubMed]
- Wan, J.; Hu, S.; Ni, K.; Chang, G.; Sun, X.; Yu, L. Characterisation of Fecal Soap Fatty Acids, Calcium Contents, Bacterial Community and Short-Chain Fatty Acids in Sprague Dawley Rats Fed with Different sn-2 Palmitic Triacylglycerols Diets. PLoS ONE 2016, 11, e0164894. [Google Scholar] [CrossRef] [PubMed]
- Devillard, E.; McIntosh, F.M.; Paillard, D.; Thomas, N.A.; Shingfield, K.J.; Wallace, R.J. Differences between human subjects in the composition of the faecal bacterial community and faecal metabolism of linoleic acid. Microbiology 2009, 155, 513–520. [Google Scholar] [CrossRef] [Green Version]
- De Koninck, A.; Nys, K.; Vandenheede, B.; van Biervliet, S.; Speeckaert, M.; Delanghe, J. Detailed faecal fat analysis using Fourier transform infrared spectroscopy: Exploring the possibilities. Clin. Biochem. 2016, 49, 1283–1287. [Google Scholar] [CrossRef]
Peak Label | Compound ID | Systematic Name (Common Name) | HP-5MS (min) | DB-225MS (min) | SLB-IL111 (min) |
---|---|---|---|---|---|
C4:0 | Butanoic acid methyl ester (Methyl butyrate) | n.d. | n.d. | n.d. | |
1 | C6:0 | Hexanoic acid methyl ester (Methyl caproate) | 4.29 | 5.46 | 6.87 |
2 | C8:0 | Octanoic acid methyl ester (Methyl caprylate) | 7.54 | 8.35 | 11.24 |
3 | C10:0 | Decanoic acid methyl ester (Methyl caprate) | 10.47 | 10.94 | 15.28 |
4 | C11:0 | Undecanoic acid methyl ester (Methyl undecanoate) | 11.81 | 12.12 | 17.12 |
5 | C12:0 | Dodecanoic acid methyl ester (Methyl laurate) | 13.07 | 13.24 | 18.83 |
6 | C13:0 | Tridecanoic acid methyl ester | 14.28 | 14.31 | 20.47 |
7 | C14:1n-5t | trans-9-Tetradecenoic acid methyl ester (Methyl 9-trans-myristelaidate) | 15.53 | 15.88 | 23.00 |
8 | C14:1n-5 | cis-9-Tetradecenoic acid methyl ester (Methyl 9-cis-myristoleat) | 15.53 | 16.04 | 23.42 |
9 | C14:0 | Tetradecanoic acid methyl ester (Methyl myristate) | 15.75 | 15.58 | 22.02 |
10 | C15:1n-5t | trans-10-Pentadecenoic acid methyl ester (Methyl 10-trans-pentadecenoate) | 17.39 | 17.56 | 24.46 |
11 | C15:1n-5 | cis-10-Pentadecenoic acid methyl ester (Methyl 10-cis-pentadecenoate) | 17.39 | 17.75 | 24.85 |
12 | C15:0 | Pentadecanoic acid methyl ester (Methyl pentadecanoate) | 17.64 | 17.19 | 23.49 |
13 | C16:1n-7 | cis-9-Hexadecenoic acid methyl ester (Methyl palmitoleate) | 19.21 | 19.51 | 25.99 |
14 | C16:1n-7t | trans-9-Hexadecenoic acid methyl ester (Methyl palmitelaidate) | 19.32 | 19.39 | 25.69 |
15 | C16:0 | Hexadecanoic acid methyl ester (Methyl palmitate) | 19.69 | 19.09 | 24.93 |
16 | C17:1n-7 | cis-10-Heptadecenoic acid methyl ester (Methyl 10-heptadecenoate) | 21.32 | 21.71 | 27.31 |
17 | C17:1n-7t | trans-10-Heptadecenoic acid methyl ester (Methyl 10-trans-heptadecenoate) | 21.46 | 21.59 | 27.05 |
18 | C17:0 | Heptadecanoic acid methyl ester (Methyl heptadecenoate) | 21.86 | 21.24 | 26.27 |
19 | C18:3n-6 | cis,cis,cis-6,9,12-Octadecatrienoic acid methyl ester (Methyl γ-linolenate) | 23.05 | 25.34 | 30.76 |
20 | C18:2n-6cc | cis,cis-9,12-Octadecadienoic acid methyl ester (Methyl linoleate) | 23.57 | 24.87 | 29.86 |
21 | C18:3n-3 | cis,cis,cis-9,12,15-Octadecatrienoic acid methyl ester (Methyl α-linolenate) | 23.74 | 26.21 | 31.38 |
22 | C18:1n-9 | cis-9-Octadecenoic acid methyl ester (Methyl oleate) | 23.87 | 23.91 | 28.41 |
23 | C18:2n-6tt | trans,trans-9,12-Octadecadienoic acid methyl ester (Methyl linoelaidate) | 23.87 | 24.66 | 29.32 |
24 | C18:1n-7 | cis-11-Octadecenoic acid methyl ester (Methyl cis-vaccenate) | 23.87 | 24.13 | 28.25 |
25 | C18:1n-9t | cis-9-Octadecenoic acid methyl ester (Methyl elaidate) | 24.08 | 23.91 | 28.33 |
26 | C18:1n-12t | trans-6-Octadecenoic acid methyl ester (Methyl petroselaidate) | 24.08 | 23.91 | 28.50 |
27 | C18:1n-12 | cis-6-Octadecenoic acid methyl ester (Methyl petroselinoate) | 24.08 | 23.98 | 28.64 |
28 | C18:1n-7t | trans-11-Octadecenoic acid methyl ester (Methyl trans-vaccenate) | 24.15 | 23.91 | 28.25 |
29 | C18:0 | Octadecanoic acid methyl ester (Methyl stearate) | 24.72 | 23.60 | 27.68 |
30 | C19:1n-12t | trans-7-Nonadecenoic acid methyl ester (Methyl 7-trans-nonadecenoate) | 27.23 | 26.54 | 29.50 |
31 | C19:1n-9t | cis-10-Nonadecenoic acid methyl ester (Methyl 10-trans-nonadecenoate) | 27.51 | 26.64 | 29.37 |
32 | C20:4n-6 | cis,cis,cis,cis-5,8,11,14-Eicosatetraenoic acid methyl ester (Methyl arachidonate) | 28.81 | 32.15 | 33.57 |
33 | C20:5n-3 | cis,cis,cis,cis,cis-5,8,11,14,17-Eicosapentaenoic acid methyl ester (Methyl eicosapentaenoate) | 28.95 | 33.39 | 35.02 |
34 | C20:3n-6 | cis,cis,cis-8,11,14-Eicosatrienoic acid methyl ester (Methyl dihomo-γ linolenate) | 29.39 | 31.93 | 33.03 |
35 | C20:2n-6 | cis,cis-11,14-Eicosadienoic acid methyl ester (Methyl 11-14-eicosadienoate) | 30.00 | 31.47 | 32.16 |
36 | C20:1n-9 | cis-11-Eicosenoic acid methyl ester (Methyl gondoate) | 30.17 | 30.30 | 30.87 |
37 | C20:3n-3 | cis,cis,cis-11,14,17-Eicosapentaenoic acid methyl ester (Methyl 11-14-17-eicosatrienoate) | 30.17 | 32.77 | 33.57 |
38 | C20:1n-9t | trans-11-Eicosenoic acid methyl ester (Methyl 11-trans-eicosenoate) | 30.38 | 30.22 | 30.76 |
39 | C20:0 | Eicosanoic acid methyl ester (Methyl arachidate) | 30.92 | 29.79 | 30.11 |
40 | C21:0 | Heneicosanoic acid methyl ester (Methyl heneicosanoate) | 33.21 | 32.77 | 31.23 |
41 | C22:5n-6 | cis,cis,cis,cis,cis-4,7,10,13,16-Docosapentaenoic acid methyl ester (Osbond acid methyl ester) | 33.21 | 37.31 | 36.22 |
42 | C22:6n-3 | cis,cis,cis,cis,cis,cis-4,7,10,13,16,19-Docosahexaenoic acid methyl ester (Methyl docosahexaenoate, DHA) | 33.37 | 38.36 | 37.60 |
43 | C22:4n-6 | cis,cis,cis,cis-7,10,13,16-Docosatetraenoic acid methyl ester (Methyl adrenate) | 33.58 | 37.13 | 35.82 |
44 | C22:5n-3 | cis,cis,cis,cis,cis-7,10,13,16,19-Docosapentenoic acid methyl ester (Methyl clupanodonat) | 33.70 | 38.19 | 37.18 |
45 | C22:2n-6 | cis,cis-13,16-Docosadienoic acid methyl ester (Methyl 13-16-docosadienoate) | 34.49 | 36.34 | 34.28 |
46 | C22:1n-9 | cis-13-Docosenoic acid Methyl ester (Methyl erucate) | 34.61 | 35.44 | 33.11 |
47 | C22:1n-9t | cis-13-Docosenoic acid methyl ester (Methyl brassidate) | 34.76 | 35.37 | 32.96 |
48 | C22:0 | Docosanoic acid methyl ester (Methyl behenate) | 35.15 | 35.06 | 32.38 |
49 | C23:0 | Tricosanoic acid methyl ester (Methyl tricosanoate) | 36.94 | 37.41 | 33.46 |
50 | C24:1n-9 | cis-15-Tetracosenoic acid methyl ester (Methyl nervonate) | 38.13 | 39.89 | 35.12 |
51 | C24:0 | Tetracosanoic acid methyl ester (Methyl lignocerate) | 38.57 | 39.45 | 34.43 |
Peak Label | Compound ID | Systematic Name (Common Name) | HP-5MS(min) | DB-225MS (min) | SLB-IL111 (min) |
---|---|---|---|---|---|
1′ | C18:2n-6cc | cis,cis-9,12-Octadecadienoic acid methyl ester (Methyl linoleate) | 23.56 | 24.81 | 29.77 |
2′ | C18:2n-6tt | trans,trans-9,12-Octadecadienoic acid methyl ester (Methyl linoelaidate) | 23.89 | 24.64 | 29.24 |
3′ | C18:2n-6tc | trans,cis-9,12-Octadecadienoic acid methyl ester | 23.89 | 24.81 | 29.48 |
4′ | C18:2n-6ct | cis,trans-9,12-Octadecadienoic acid methyl ester | 24.02 | 24.98 | 29.61 |
FAMEs | HP–5MS | DB-225MS | SLB-IL111 | |||
---|---|---|---|---|---|---|
LOD a (g mL−1) | LOQ b (g mL−1) | LOD a (g mL−1) | LOQ b (g mL−1) | LOD a (g mL−1) | LOQ b (g mL−1) | |
C18:2n-6cc | 0.33 | 0.98 | 0.51 | 1.20 | 0.26 | 0.74 |
C18:2n-6tt | 1.19 | 3.91 | 3.01 | 6.33 | 0.35 | 1.38 |
C18:2n-6tc | 0.46 | 1.67 | 0.97 | 2.96 | 0.09 | 0.47 |
C18:2n-6ct | 0.43 | 2.15 | 1.02 | 2.41 | 0.15 | 0.93 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mező, E.; Bufa, A.; Páger, C.; Poór, V.; Marosvölgyi, T.; Kilár, F.; Makszin, L. The Role of Ionic Liquid Interaction in the Separation of Fatty Acid Methyl Esters—Polyunsaturated Geometric Isomers in GC–MS. Separations 2021, 8, 38. https://doi.org/10.3390/separations8040038
Mező E, Bufa A, Páger C, Poór V, Marosvölgyi T, Kilár F, Makszin L. The Role of Ionic Liquid Interaction in the Separation of Fatty Acid Methyl Esters—Polyunsaturated Geometric Isomers in GC–MS. Separations. 2021; 8(4):38. https://doi.org/10.3390/separations8040038
Chicago/Turabian StyleMező, Emerencia, Anita Bufa, Csilla Páger, Viktória Poór, Tamás Marosvölgyi, Ferenc Kilár, and Lilla Makszin. 2021. "The Role of Ionic Liquid Interaction in the Separation of Fatty Acid Methyl Esters—Polyunsaturated Geometric Isomers in GC–MS" Separations 8, no. 4: 38. https://doi.org/10.3390/separations8040038
APA StyleMező, E., Bufa, A., Páger, C., Poór, V., Marosvölgyi, T., Kilár, F., & Makszin, L. (2021). The Role of Ionic Liquid Interaction in the Separation of Fatty Acid Methyl Esters—Polyunsaturated Geometric Isomers in GC–MS. Separations, 8(4), 38. https://doi.org/10.3390/separations8040038