Speciation and Determination of Selenium Oxyanions at the Drinking Water Pollution Concentration Levels
Abstract
1. Introduction
2. Materials and Methods
2.1. Reagents
2.2. Adsorbents
2.3. Experimental Procedure
3. Results and Discussion
3.1. Effect of pH on Adsorption
3.2. Examined Adsorbents
- At the lower dose of 0.25 g/L, the adsorbents with the relatively lower PSCD values (i.e., FeOOH/5.7, FeOOH/8, and Bayoxide) resulted in the partial adsorption of Se(IV), whereas the adsorbents with the higher PSCD values (i.e., FeOOH/2.5 and FeOOH/4) showed the adsorption/separation of both Se species.
- At the higher doses of 0.5, 1, and 2 g/L, the FeOOH/8 showed the insufficient uptake of Se(IV), whereas the Bayoxide presented complete Se(IV) uptake. In contrast, the adsorbents FeOOH/2.5, FeOOH/4, and FeOOH/5.7 showed the adsorption of both species.
- The relative standard deviation of selenium species adsorption was under 5% (i.e., RSD <5%) for all these experiments.
- FeOOHs with the higher PSCD values can adsorb both selenium species at any examined concentration/adsorbent dose.
- FeOOH/8 partially adsorbs Se(IV) at any adsorbent dose.
- When using the quantities 0.5 and 1 g/L, the adsorbents FeOOH/5.7 and Bayoxide can completely adsorb/separate Se(IV), while at the higher dose of 2 g/L, they can also adsorb a part of Se(VI).
- At the quantities 0.5 and 1 mg/L, Bayoxide demonstrated the complete adsorption of only SeIV (and not of SeVI) within 30 min of contact time.
3.3. Effect of Different Commonly Co-Existing Ions on the Selective Adsorption of Se(IV), Using the Bayoxide Material
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Conflicts of Interest
References
- Pettine, M.; McDonald, T.J.; Sohn, M.; Anquandah, G.A.K.; Zboril, R.; Sharma, V.K. A critical review of selenium analysis in natural water samples. Trends Environ. Anal. Chem. 2015, 5, 1–7. [Google Scholar] [CrossRef]
- WHO. Guidelines for Drinking-Water Quality: Fourth Edition Incorporating the First Addendum; WHO: Geneva, Switzerland, 2017. [Google Scholar] [CrossRef]
- EPA. 2018 Edition of the Drinking Water Standards and Health Advisories Tables; Office of Water, US Environmental Protection Agency: Washington, DC, USA, 2018.
- The Council of the European Union. Council Directive 98/93/EC of November 1998 on the Equality of Water Intended for Human Consumption; Official Journal of the European Communities: Luxembourg, 1988. [Google Scholar]
- Vinceti, M.; Vicentini, M.; Wise, L.A.; Sacchettini, C.; Malagoli, C.; Ballotari, P.; Filippini, T.; Malavolti, M.; Rossi, P.G. Cancer incidence following long-term consumption of drinking water with high inorganic selenium content. Sci. Total Environ. 2018, 635, 390–396. [Google Scholar] [CrossRef]
- He, M.; Su, S.; Chen, B.; Hu, B. Simultaneous speciation of inorganic selenium and tellurium in environmental water samples by polyaniline functionalized magnetic solid phase extraction coupled with ICP-MS detection. Talanta 2020, 207, 120314. [Google Scholar] [CrossRef] [PubMed]
- Sentkowska, A.; Pyrzynska, K. Hydrophilic interaction liquid chromatography in the speciation analysis of selenium. J. Chromatogr. B Anal. Technol. Biomed. Life Sci. 2018, 1074–1075, 8–15. [Google Scholar] [CrossRef]
- Kalaitzidou, K.; Nikoletopoulos, A.; Tsiftsakis, N.; Pinakidou, F.; Mitrakas, M. Adsorption of Se(IV) and Se(VI) species by iron oxy-hydroxides: Effect of positive surface charge density. Sci. Total Environ. 2019, 687, 1197–1206. [Google Scholar] [CrossRef] [PubMed]
- Santos, S.; Ungureanu, G.; Boaventura, R.; Botelho, C. Selenium contaminated waters: An overview of analytical methods, treatment options and recent advances in sorption methods. Sci. Total Environ. 2015, 521–522, 246–260. [Google Scholar] [CrossRef]
- Barabas, S.; Cooper, W.C. Volumetric determination of selenium. Anal. Chem. 1956, 28, 129–130. [Google Scholar] [CrossRef]
- Ooba, S.; Uneo, S. Gravimetric determination of selenium from perchloric acid solution with hydrazine. Talanta 1975, 22, 51–55. [Google Scholar] [CrossRef]
- Bagheri, N.; Saraji, M. Combining gold nanoparticle-based headspace single-drop micro-extraction and a paper-based colorimetric assay for selenium determination. Anal. Bioanal. Chem. 2019, 411, 7441–7449. [Google Scholar] [CrossRef]
- Tavancheh, M.; Beiraghi, A. Spectrophotometric Determination of Selenium (IV) Using 4,5-diamino-o-xylene as a New Chromogenic Reagent. Adv. J. Chem. A 2020, 3, 15–23. [Google Scholar] [CrossRef]
- Suzuki, Y.; Hashigaya, N.; Kawakubo, S. Development of a simple and low-cost device for fluorometric determination of selenium in water samples. Anal. Sci. 2010, 26, 719–726. [Google Scholar] [CrossRef]
- Ali, J.; Tuzen, Μ.; Kazi, T.G. Developed of a Green Water Switchable Liquid–Liquid Microextraction Method for Assessment of Selenium in Food and Soft Drink Samples by Using Hydride Generation Atomic Absorption Spectrometry. Food Anal. Methods 2019, 12, 1298–1307. [Google Scholar] [CrossRef]
- Da Luz Potes, M.; Venâncio Nakadi, F.; Grasel Frois, C.F.; Rodrigues Vale, M.G.; Messias da Silva, M. Investigation of the conditions for selenium determination by photochemical vapor generation coupled to graphite furnace atomic absorption spectrometry. Microchem. J. 2019, 147, 324–332. [Google Scholar] [CrossRef]
- Nyaba, L.; Matong, J.M.; Dimpe, K.M.; Nomngongo, P.N. Speciation of inorganic selenium in environmental samples after suspended dispersive solid phase micro-extraction combined with inductively coupled plasma spectrometric determination. Talanta 2016, 159, 174–180. [Google Scholar] [CrossRef]
- Liu, Y.; He, M.; Chen, B.; Hu, B. Simultaneous speciation of inorganic arsenic, selenium and tellurium in environmental water samples by dispersive liquid micro-extraction combined with electrothermal vaporization inductively coupled plasma mass spectrometry. Talanta 2015, 142, 213–220. [Google Scholar] [CrossRef] [PubMed]
- Kleckner, A.E.; Kakouros, E.; Robin Stewart, A. A practical method for the determination of total selenium in environmental samples using isotope dilution-hydride generation inductively coupled plasma-mass spectrometry. Limnol. Oceanogr. Methods 2017, 15, 363–371. [Google Scholar] [CrossRef]
- Martínez-Bravo, Y.; Roig-Navarro, A.F.; López, F.J.; Hernández, F. Multielemental determination of arsenic, selenium and chromium(VI) species in water by high-performance liquid chromatography-inductively coupled plasma mass spectrometry. J. Chromatogr. A 2001, 926, 265–274. [Google Scholar] [CrossRef]
- Wilschefski, S.; Matthew, B. Inductively Coupled Plasma Mass Spectrometry: Introduction to Analytical Aspects. Clin. Biochem. Rev. 2019, 40, 115–133. [Google Scholar] [CrossRef]
- Omanović, E.; Moderreger, H.; Kalcher, K. Determination of selenium in drinking water with a simple field device. Anal. LetT 2002, 35, 943–958. [Google Scholar] [CrossRef]
- Deng, B.; Feng, J.; Meng, J. Speciation of inorganic selenium using capillary electrophoresis–inductively coupled plasma-atomic emission spectrometry with on-line hydride generation. Anal. Chim. Acta 2007, 583, 92–97. [Google Scholar] [CrossRef] [PubMed]
- Kumkrong, P.; LeBlanc, K.L.; Mercier, P.H.J.; Mester, Z. Selenium analysis in waters. Part 1: Regulations and standard methods. Sci. Total Environ. 2018, 640–641, 1611–1634. [Google Scholar] [CrossRef]
- LeBlanc, K.L.; Kumkrong, P.; Mercier, P.H.J.; Mester, Z. Selenium analysis in waters. Part 2: Speciation methods. Sci. Total Environ. 2018, 640–641, 1635–1651. [Google Scholar] [CrossRef]
- Zelmanov, G.; Semiat, R. Selenium removal from water and its recovery using iron (Fe3+) oxide/hydroxide-based nanoparticles sol (NanoFe) as an adsorbent. Sep. Purif. Technol. 2013, 103, 167–172. [Google Scholar] [CrossRef]
- Gonzalez, C.M.; Hernandez, J.; Peralta-Videa, J.R.; Botez, C.E.; Parsons, J.G.; Gardea-Torresdey, J.L. Sorption kinetic study of selenite and selenate onto a high and low pressure aged iron oxide nanomaterial. J. Hazard. Mater. 2012, 211–212, 138–145. [Google Scholar] [CrossRef]
- Rovira, M.; Giménez, J.; Martínez, M.; Martínez-Lladó, X.; De Pablo, J.; Martí, V.; Duro, L. Sorption of seleni-um(IV) and selenium(VI) onto natural iron oxides: Goethite and hematite. J. Hazard. Mater. 2008, 150, 279–284. [Google Scholar] [CrossRef]
- Lo, S.L.; Chen, T.Y. Adsorption of Se(IV) and Se(VI) on an iron-coated sand from water. Chemosphere 1997, 35, 919–930. [Google Scholar] [CrossRef]
- Balistrieri, L.S.; Chao, T.T. Adsorption of selenium by amorphous iron oxyhydroxide and manganese dioxide. Geochim. Cosmochim. Acta 1990, 54, 739–751. [Google Scholar] [CrossRef]
- Das, S.; Jim Hendry, M.; Essilfie-Dughan, J. Adsorption of selenate onto ferrihydrite, goethite, and lepidocrocite under neutral pH conditions. Appl. Geochem. 2013, 28, 185–193. [Google Scholar] [CrossRef]
- Lounsbury, A.W.; Yamani, J.S.; Johnston, C.P.; Larese-Casanova, P.; Zimmerman, J.B. The role of counter ions in nano-hematite synthesis: Implications for surface area and selenium adsorption capacity. J. Hazard. Mater. 2016, 310, 117–124. [Google Scholar] [CrossRef]
- Amy, G.; Chen, H.W.; Drizo, A.; Von Gunten, U.; Brandhuber, P.; Hund, R.; Chowdhury, Z.; Kommineni, S.; Sinha, S.; Jekel, M.; et al. Adsorbent Treatment Technologies for Arsenic Removal; AWWA Research Foundation and American Water Works Association: Washington, DC, USA, 2005. [Google Scholar]
- Tresintsi, S.; Simeonidis, K.; Vourlias, G.; Stavropoulos, G.; Mitrakas, M. Kilogram-scale synthesis of iron oxy-hydroxides with improved arsenic removal capacity: Study of Fe(II) oxidation-precipitation parameters. Water Res. 2012, 46, 5255–5267. [Google Scholar] [CrossRef] [PubMed]
- Kosmulski, M. Surface Charging and Points of Zero Charge, Surface Charging and Points of Zero Charge, 1st ed.; CRC Press: Boca Raton, FL, USA, 2009. [Google Scholar] [CrossRef]
- Ahmed, M.J.; Islam, M.T.; Nime, M.J. A highly selective and sensitive spectrophotometric method for the determination of selenium using 2-hydroxy-1-napthaldehyde-orthoaminophenol. Anal. Methods 2015, 7, 7811–7823. [Google Scholar] [CrossRef]
Cations | mg/L | Anions | mg/L |
---|---|---|---|
Na+ | 88.8 | HCO3− | 138 |
Ca2+ | 40.0 | SO42− | 50 |
Mg2+ | 12.7 | Cl− | 71 |
N-NO3− | 2 | ||
F− | 1 | ||
P-PO43− | 0.04 | ||
Si/SiO2 | 10.5/22.4 |
Synthesis Parameters | Physicochemical Characteristics | |||||||
---|---|---|---|---|---|---|---|---|
Abbreviation | Materials | pH | ORP 1 (mV) | Fe wt. % | Surface Area (m2/g) | IEP 2 | ZPC 3 | PSCD 4 mmol [OH−]/g |
FeOOH/2.5 | FeSO4/H2O2 | 2.5 | 600 | 44.8 | 48 | 6.9 | 2.7 | 3.25 |
FeOOH/4 | FeSO4/H2O2 | 4.0 | 380 | 50.4 | 120 | 7.1 | 3.2 | 2.23 |
FeOOH/5.7 | FeSO4/H2O2 | 5.7 | 380 | 50.1 | 168 | 7.3 | 4.2 | 1.42 |
FeOOH/8 | FeSO4/H2O2 | 8.0 | 250 | 50.2 | 226 | 6.6 | 7.9 | 1.04 |
Bayoxide | 52.0 | 135 | 7.4 | 7.8 | 0.80 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kalaitzidou, K.; Bidiou, E.; Zouboulis, A.; Mitrakas, M. Speciation and Determination of Selenium Oxyanions at the Drinking Water Pollution Concentration Levels. Separations 2021, 8, 27. https://doi.org/10.3390/separations8030027
Kalaitzidou K, Bidiou E, Zouboulis A, Mitrakas M. Speciation and Determination of Selenium Oxyanions at the Drinking Water Pollution Concentration Levels. Separations. 2021; 8(3):27. https://doi.org/10.3390/separations8030027
Chicago/Turabian StyleKalaitzidou, Kyriaki, Evangelia Bidiou, Anastasios Zouboulis, and Manassis Mitrakas. 2021. "Speciation and Determination of Selenium Oxyanions at the Drinking Water Pollution Concentration Levels" Separations 8, no. 3: 27. https://doi.org/10.3390/separations8030027
APA StyleKalaitzidou, K., Bidiou, E., Zouboulis, A., & Mitrakas, M. (2021). Speciation and Determination of Selenium Oxyanions at the Drinking Water Pollution Concentration Levels. Separations, 8(3), 27. https://doi.org/10.3390/separations8030027