Immobilized TiO2/ZnO Sensitized Copper (II) Phthalocyanine Heterostructure for the Degradation of Ibuprofen under UV Irradiation
Abstract
1. Introduction
2. Materials and Methods
2.1. Chemicals and Reagents
2.2. Instrumentation and Methods
2.3. Synthesis and Characterization of Copper (II) Phthalocyanine (CuPc)
- 4-(4-benzo[d]thiazol-2-yl)-2-methoxyphenoxy) phthalonitrile (3)
- 2,9,16,24-tetrakis [4-(1,3-benzothiazol-2-yl)-2-methoxyphenoxy]-29H,31H-(2-)-κ2N29, N31CuPc (4)
2.4. Preparation of Film Coatings
2.5. Photocatalytic Measurements
3. Results and Discussion
3.1. Synthesis and Characterization of Copper (ii) Phthalocyanine (CuPc)
UV-Visible Absorption of CuPc
3.2. Characterization of Photocatalyst Structures
3.2.1. X-Ray Diffraction (XRD) Measurements
3.2.2. Fourier Transform Infrared (FTIR) Analysis
3.2.3. Scanning Electron Microscopy (SEM)
3.2.4. UV-Visible Spectroscopy (UV-Vis) Measurement
3.2.5. Steady-State Photoluminescence Measurement
3.3. Photocatalytic Activity
3.3.1. pH Effects
3.3.2. Effects of Chemical Scavengers
3.3.3. Photostability of TiO2/ZnO/CuPc
3.3.4. Possible Photodegradation Mechanism of TiO2/ZnO/CuPc
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Shahawi, M.S.E.; Hamza, A.; Bashammakh, A.S.; Al-Saggaf, W.T. An Overview on the Accumulation, Transformations, Toxicity, and Analytical Methods for the Monitoring of Persistent Organic Pollutants. Talanta 2010, 80, 1587–1597. [Google Scholar] [CrossRef]
- Anucha, C.B.; Altin, I.; Biyiklioglu, Z.; Bacaksiz, E.; Polat, I.; Stathopoulos, V.N. Synthesis, Characterization, and Photocatalytic Evaluation of Manganese (III) Phthalocyanine Sensitized ZnWO4 (ZnWO4MnPc) for Bisphenol A Degradation under UV Irradiation. Nanomaterials 2020, 10, 2139. [Google Scholar] [CrossRef]
- Anucha, C.B.; Altin, I.; Fabbri, D.; Degirmencioglu, I.; Calza, P.; Magnacca, G.; Stathopoulos, V.N.; Bacaksiz, E. Synthesis and Characterization of B/NaF and Silicon Phthalocyanine-Modified TiO2 and an Evaluation of Their Photocatalytic Removal of Carbamazepine. Separations 2020, 7, 71. [Google Scholar] [CrossRef]
- Holgado, C.J.; Crimatopoulos, C.; Stathopoulos, V.N.; Sakkas, V. Investigating the Utility of Fabric Phase Sorptive Extraction and HPLC-UV-Vis/DAD to Determine Antidepressant Drugs in Environmental Aqueous Samples. Separations 2020, 7, 39. [Google Scholar] [CrossRef]
- Scheneider, J.; Matsuoka, M.; Takeuchi, M.; Zhang, J.; Horiuchi, Y.U.; Anpo, M.; Bahnemann, D.W. Understanding TiO2 Photocatalysis: Mechanisms and Materials. Chem. Rev. 2014, 114, 9919. [Google Scholar] [CrossRef] [PubMed]
- Linsebigler, A.L.; Guangquang, L.; Yates, J.T. Photocatalysis on TiO2 Surfaces: Principles, Mechanisms, and Selected Results. Chem. Rev. 1995, 95, 735–758. [Google Scholar] [CrossRef]
- Shahrezaei, M.; Babaluo, A.A.; Habibzadeh, S.; Haghighi, M. Photocatalytic Properties of 1D TiO2 Nanostructures Prepared rom Polyacrylamide Gel- TiO2 Nanopowders by Hydrothermal Synthesis. Eur. J. Inorg. Chem. 2017, 3, 694–703. [Google Scholar] [CrossRef]
- Kment, S.; Riboni, F.; Pausova, S.; Wang, L.; Han, H.; Hubicka, Z.; Krysa, J.; Schumuki, P.; Zboril, R. Photoanodes Based on TiO2 and α-Fe2O3 for Water Splitting- Superior Role of 1D Nanoarchitectures and of Combined Heterostructures. Chem. Soc. Rev. 2017, 46, 3716–3769. [Google Scholar] [CrossRef]
- Dal Santo, V.; Naldoni, A. Titanium Dioxide Photocatalysis. Catalysts 2018, 8, 591. [Google Scholar] [CrossRef]
- Pandis, P.K.; Perros, D.E.; Stathopoulos, V.N. Doped Apatite-Type Lanthanum Silicates in CO Oxidation Reaction. Catal. Commun. 2018, 114, 98–103. [Google Scholar] [CrossRef]
- Damaskinos, C.M.; Vasiliades, M.A.; Stathopoulos, V.N.; Efstathiou, A.M. The Effect of CeO2 Preparation Method on the Carbon Pathways in the Dry Reforming of Methane on Ni/CeO2 Studied by Transient Techniques. Catalysts 2019, 9, 621. [Google Scholar] [CrossRef]
- Stefa, S.; Lykaki, M.; Binas, V.; Pandis, P.K.; Stathopoulos, V.N.; Konsolakis, M. Hydrothermal Synthesis of ZnO-Doped Ceria Nanorods: Effects of ZnO Content on the Redox Properties and the CO Oxidation of Performance. Appl. Sci. 2020, 10, 7605. [Google Scholar] [CrossRef]
- Lykaki, M.; Stefa, S.; Carabiniero, S.A.C.; Pandis, P.K.; Stathopoulos, V.N.; Konsolakis, M. Facet-Dependent Reactivity of Fe2O3/CeO2 Nanocomposites: Effect of Ceria Morphology on CO Oxidation. Catalysts 2019, 9, 371. [Google Scholar] [CrossRef]
- Stefa, S.; Lykaki, M.; Fragkoulis, D.; Binas, V.; Pandis, P.K.; Stathopoulos, V.N.; Konsolakis, M. Effect of the Method of Preparation the Physicochemical Properties and the CO Oxidation Performance of the Nanostructured CeO2/TiO2 Oxides. Processes 2020, 8, 847. [Google Scholar] [CrossRef]
- Ge, M.; Cao, C.; Huang, J.; Li, S.; Chen, Z.; Zhang, K.-Q.; Al-Deyab, S.S.; Lai, Y. A Review of One-Dimensional TiO2 Nanostructured Materials for Environmental and Energy Applications. J. Mater. Chem. A 2016, 4, 6772–6801. [Google Scholar] [CrossRef]
- Fujishima, A.; Rao, T.N.; Tyrk, D.A. Titanium dioxide Photocatalysis. J. Photochem. Photobiol. C Photochem. Rev. 2000, 1, 1–21. [Google Scholar] [CrossRef]
- Garcia, N.M.; Ignacio Maldonado, M.; Coronado, J.M.; Malato, S. Degradation Study of 15 Emerging Contaminants at Low Concentration by Immobilized TiO2 in a Plant. Catal. Today 2010, 151, 107–113. [Google Scholar] [CrossRef]
- Srikanth, B.; Goutham, R.; Naraya, B.; Ramprasath, A.; Gopinath, K.P. Recent Advancements in Supporting Materials for Immobilized Photocatalytic Applications in Wastewater Treatment. J. Environ. Manag. 2017, 200, 60–78. [Google Scholar] [CrossRef]
- Mofokeng, M.J.; Kumar, V.; Kroon, R.E.; Ntwaeaborwa OM, J. Structure and Optical Properties of Dy3+ Activated Sol-Gel ZnO-TiO2 Nanocomposites. J. Alloy Compd. 2017, 711, 121–131. [Google Scholar] [CrossRef]
- Siwinska, K.S.; Kubiak, A.; Piasecki, A.; Goscianska, J.; Nowaczyk, G.; Jurga, S.; Jesionowski, T. TiO2-ZnO Binary Oxide Systems: Comprehensive Characterization and Tests of Photocatalytic Activity. Materials (Basel) 2018, 11, 841. [Google Scholar] [CrossRef]
- Perovic, K.; de la Rosa, F.M.; Kovacic, M.; Kusic, H.; Stangar, U.L.; Fresno, F.; Dionysiou, D.D.; Bozic, A.L. Recent Achievements in Development of TiO2-Based Composite Photocatalytic Materials for Solar Driven Water Purification and Water Splitting. Materials 2020, 13, 1338. [Google Scholar] [CrossRef]
- Zhou, X.; Shi, T.; Zhou, H. Hydrothermal Preparation of ZnO-Reduced Graphene Oxide Hybrid with High Performance in Photocatalytic Degradation. App. Surf. Sci. 2012, 258, 6204–6211. [Google Scholar] [CrossRef]
- Kuo, M.-Y.; Hsiao, C.-F.; Chiu, Y.-H.; Lai, T.-H.; Fang, M.-J.; Wu, J.-Y.; Chen, J.-W.; Wu, C.-L.; Wei, K.-H.; Lin, H.-C.; et al. Au@Cu2O Core@Shell Nanocrystals as Dual-Functional Catalysts for Sustainable Environmental Applications. Appl. Catal. B Environ. 2019, 242, 499–506. [Google Scholar] [CrossRef]
- Chiu, Y.-H.; Hsu, Y.-Y. Au@Cu7S4 Yolk @ Shell Nanocrystal-Decorated TiO2 Nanowires as an All-Day-Active Photocatalyst for Environmental Purification. Nano Energy 2017, 31, 286–295. [Google Scholar] [CrossRef]
- Sardar, S.; Kar, P.; Pal, S.K. The Impact of Central Metal Ions in Porphyrin Functionalized ZnO/TiO2 for Enhanced Solar Energy Conversion. J. Mater. Nanosci. 2014, 1, 12–30. [Google Scholar]
- Albay, C.; Koc, M.; Altin, I.; Bayrak, R.; Degirmencioglu, I.; Sokmen, M. New Dye Sensitized Photocatalyst: Copper (II) Phthalocyanine/TiO2 Nanocomposite for Water Remediation. J. Photochem. Photobiol. A Chem. 2016, 324, 117–125. [Google Scholar] [CrossRef]
- Cabir, B.; Yurderi, M.; Caner, N.; Agirtas, M.S.; Zahmakiran, M.; Kaya, M. Methylene Blue Photocatalytic Degradation under Visible Light Irradiation on Copper Phthalocyanine-Sensitized TiO2 Nanopowders. Mater. Sci. Eng. B 2017, 224, 9–17. [Google Scholar] [CrossRef]
- Vallejo, W.A.; Uribe, C.D.; Guzman, A.E.C. Methylene Blue Photocatalytic Degradation Under Visible Irradiation on TiO2 Thin films Sensitized with Cu and Zn Tetracaboxy-Phthalocyanines. J. Photochem. Photobiol. A Chem. 2015, 299, 80–86. [Google Scholar] [CrossRef]
- Li, M.; Hu, Q.; Shan, H.; Yu, W.; Xu, Z.-X. Fabrication of Copper Phthalocyanine/Reduced Graphene Oxide Nanocomposite for Efficient Reduction of Hexavalent Chromium. Chemosphere 2021, 263, 128250. [Google Scholar] [CrossRef] [PubMed]
- Li, K.; Pang, Y.; Lu, Q. In situ Growth of Copper (ii) Phthalocyanine-Sensitized Electrospun CeO2/Bi2MoO6 Nanofibres: A Highly Efficient Photoelectrocatalyst towards Degradation of Tetracyline. Inorg. Chem. Front. 2019, 6, 3215–3224. [Google Scholar] [CrossRef]
- Mun, S.J.; Park, S.-J. Graphitic Carbon Nitride Materials for Photocatalytic Hydrogen Production via Water Splitting: A Short Review. Catalysts 2019, 9, 805. [Google Scholar] [CrossRef]
- Lee, S.L.; Chang, C.-J. Recent Progress on Metal Sulfide Composite Nanomaterials for Photocatalytic Hydrogen Production. Catalyst 2019, 9, 457. [Google Scholar] [CrossRef]
- Fang, M.-J.; Tsao, C.-W.; Hsu, Y.-J. Semiconductor Nanoheterostructures for Photoconversion Applications. J. Phys. D Appl. Phys. 2020, 53, 143001. [Google Scholar] [CrossRef]
- Ge, J.; Zhang, Y.; Heo, Y.-J.; Park, S.-J. Advanced Design and Synthesis of Composite Photocatalysts for the Remediation of Wastewater: A Review. Catalyst 2019, 9, 122. [Google Scholar] [CrossRef]
- Devi, A.S.; Aswathy, V.V.; Sheena Mary, Y.; Panicker, C.Y.; Armakovic, S.J.; Ravindran, R.; van Alsenoy, C. Synthesis, XRD Crystal Structure Analysis, Vibrational Spectral Analysis, Molecular Dynamics and Molecular Docking Studies of 2-(3-methoxy-4-hydroxyphenyl) benzothiazole. J. Mol. Struct. 2017, 1148, 282–292. [Google Scholar] [CrossRef]
- Yılmaz, S.; Polat, I.; Atasoy, Y.; Bacaksız, E. Structural, Morphological, Optical and Electrical Evolution of Spray Deposited ZnO Rods Co-doped with Indium and Sulphur Atoms. J. Mater. Sci. Mater. Electron. 2014, 25, 1810–1816. [Google Scholar] [CrossRef]
- Chohan, S.; Booysen, I.N.; Mambanda, A. Cobalt b-tetra(3-oxyflavone/2-(2-oxyphenyl) benzoxazole) phthalocyanines and Their Carbon Nanotube Conjugates: Formation, Characterization and Dopamine Electrocatalysis. Polyhedron 2015, 102, 284–292. [Google Scholar] [CrossRef]
- Nas, A.; Kantekin, H.; Koca, A. Novel 4-(2-(benzo[d]thiazol-2-yl) phenoxy) Substituted Phthalocyanine Derivatives: Synthesis, Electrochemical and In-situ Spectroelectrochemical Characterization. J. Organomet. Chem. 2014, 757, 62–71. [Google Scholar] [CrossRef]
- Aktas, A.; Durmus, M.; Degirmencioglu, I. Self-assembly Novel Phthalocyanines Containing a Rigid Benzothiazole Skeleton With a 1,4-Benzene Linker: Synthesis, Spectroscopic and Spectral Properties, and Photochemical/Photophysical Affinity. Polyhedron 2012, 48, 80–91. [Google Scholar] [CrossRef]
- Elhalil, A.; Elmoubarki, R.; Farnane, M.; Machrouhi, A.; Sadiq, M.; Mahjoubi, F.Z.; Qourzal, S.; Barka, N. Photocatalytic Degradation of Caffeine as a Model Pharmaceutical Pollutant on Mg Doped ZnO-Al2O3 Heterostructure. Environ. Nanotechnol. Monit. Manag. 2018, 10, 63–72. [Google Scholar] [CrossRef]
- Mavric, T.; Valant, M.; Forster, M.; Cowman, A.J.; Lavrencic, U.; Emin, S. Design of Highly Photocatalytically Active ZnO/CuWO4 Nanocomposite. J. Colloid Interface Sci. 2016, 483, 93–101. [Google Scholar] [CrossRef] [PubMed]
- Karkare, M.M. Choice of Precursor Not Affecting the Size of Anatase TiO2Nanoparticles but Affecting Morphology under Broader View. Int. Nano Lett. 2014, 4, 111. [Google Scholar] [CrossRef]
- Bespalko, Y.; Kuzenetsova, T.; Kriger, T.; Chesalov, Y.; Lapina, O.; Ishchenko, A.; Larina, T.; Sadykov, V.; Stathopoulos, V. La2Zr2O7/LaAlO3 Composite Prepared by Mixing Precipitated Precursors: Evolution of Its Structure under Sintering. Mater. Chem. Phys. 2020, 251, 123093. [Google Scholar] [CrossRef]
- Balakrishnan, M.; John, R. Properties of Sol-gel Synthesized Multiphase TiO2 (AB)-ZnO (ZW) Semiconductor Nanostructure: An Effective Catalyst for Methylene Blue Dye Degradation. Iran. J. Catal. 2020, 10, 1–16. [Google Scholar]
- Khan, M.I.; Bhatti, K.A.; Qindeel, R.; Bousiakuo, L.G.; Alonizan, N. Investigations of The Structural, Morphological and Electrical Properties of Multilayer ZnO/TiO2 Thin films Deposited by Sol-gel Technique. Results Phys. 2016, 6, 156–160. [Google Scholar] [CrossRef]
- Shaogui, Y.; Xie, Q.; Xinyong, L.; Yazi, L.; Shuo, C.; Guohua, C. Preparation, Characterization and Photoelectrocatalytic Properties of Nanocrystalline Fe2O3/TiO2, ZnO/TiO2, Fe2O3/ZnO/TiO2 Composite Film Electrodes Towards Pentachlorophenol Degradation. Phys. Chem. Chem. Phys. 2004, 6, 659–664. [Google Scholar] [CrossRef]
- Wang, Z.; Helmerson, U.; Kall, P.-O. Optical Properties of Anatase TiO2 Thin Films Prepared by Aqueous Sol-Gel Process at Low Temperature. Thin Solid Films 2002, 405, 50–54. [Google Scholar] [CrossRef]
- Zhao, L.; Xia, M.; Liu, Y.; Zheng, B.; Jiang, Q.; Lian, L. Structure and Photocatalysis of TiO2/ZnO Double -Layer Film Prepared by Pulsed Laser Deposition. Mater. Trans. 2012, 53, 463–468. [Google Scholar] [CrossRef]
- Upadhyay, G.K.; Rajput, J.K.; Pathak, T.K.; Kumar, V.; Purohit, L.P. Synthesis of ZnO: TiO2 Nanocomposites for Photocatalyst Application in Visible Light. Vacuum 2019, 160, 154–163. [Google Scholar] [CrossRef]
- Duran, N.E.; Capan, I. A Study on The Macrocycle Ring Size and R-group Chain Length on The Optical Properties of The CuPc Thin Films. Indian J. Phys. 2020, 94, 1061–1070. [Google Scholar] [CrossRef]
- Elgazzar, E. Improvement of the Efficiency of Al/CuPc/n-Si/Al Schottky Diode Based on Strong Light Absorption and High Photocarriers Response. Mater. Res. Express 2020, 7, 095102. [Google Scholar] [CrossRef]
- Mathew, S.; Prasad, A.K.; Benoy, T.; Rakesh, P.P.; Hari, M.; Radhakrishnan, P.; Nampoori, V.P.N.; Vallaban, C.P.G. UV-Visible Photoluminescence of TiO2 Nanoparticles Prepared by Hydrothermal Method. J. Fluoresc. 2012, 22, 1563–1569. [Google Scholar] [CrossRef]
- Cai, H.; Liang, P.; Hu, Z.; Shi, L.; Yang, X.; Sun, J.; Xu, N.; Wu, J. Enhanced Photoelectrochemical Activity of ZnO-Coated TiO2 Nanotubes and Its Dependence on ZnO Coating Thickness. Nanoscale Res. Lett. 2016, 11, 104. [Google Scholar] [CrossRef]
- Yilmaz, S.; McGlynn, E.; Bacaksiz, E.; Cullen, J.; Chellappan, R.K. Structural, Optical and Magnetic Properties of Ni Doped ZnO Micro-rods Grown by The Spray Pyrolysis Method. Chem. Phys. Lett. 2012, 525-526, 72–76. [Google Scholar] [CrossRef][Green Version]
- Zhao, S.; Cheng, Z.; Kang, L.; Li, M.; Gao, Z. The Facile Preparation of Ag Decorated TiO2/ZnO Nanotubes and Their Potent Photocatalytic Degradation Efficiency. RSC Adv. 2017, 7, 50064. [Google Scholar] [CrossRef]
- Pant, B.; Ojha, G.P.; Kuk, Y.-S.; Kwon, O.H.; Park, Y.W.; Park, W. Synthesis and Characterization of ZnO-TiO2/Carbon Fibre Composite with Enhanced Photocatalytic Properties. Nanomaterials 2020, 10, 1960. [Google Scholar] [CrossRef] [PubMed]
- Arriaga, F.M.; Palma, R.A.T.; Petrier, C.; Esplugas, S. Ultrasonic Treatment of Water Contaminated with Ibuprofen. Water Res. 2008, 42, 4243–4248. [Google Scholar] [CrossRef]
- Simsek, E.B.; Kilic, B.; Asgin, M.; Akan, A. Graphene Oxide Based Heterojunction TiO2-ZnO Catalyst with Outstanding Photocatalytic Performance for Bisphenol A, Ibuprofen, and Flurbiprofen. J. Ind. Eng. Chem. 2018, 59, 115–126. [Google Scholar] [CrossRef]
- Gongora, J.F.; Elizondo, P.; Ramirez, A.H. Photocatalytic Degradation of Ibuprofen Using TiO2 Sensitized by Ru (II) Polyaza Complexes. Photochem. Photobiol. Sci. 2017, 16, 31. [Google Scholar] [CrossRef]
- Guedid, H.; Reinert, L.; Leveque, J.-M.; Soneda, Y.; Bellakhal, N.; Duclaux, L. The Effects of The Surface Oxidation of Activated Carbon, The Solution pH and The Temperature on Adsorption of Ibuprofen. Carbon 2013, 54, 432–443. [Google Scholar] [CrossRef]
- Ma, H.-Y.; Zhao, L.; Guo, L.-H.; Zhang, H.; Chen, F.-J.; Yu, W.-C. Roles of Reactive Oxygen Species (ROS) in the Photocatalytic Degradation of Pentachlorophenol and Its Main Toxic Intermediates by TiO2/UV. J. Hazard. Mater. 2019, 369, 719–726. [Google Scholar] [CrossRef] [PubMed]
- Rosman, N.; Salleh, W.N.W.; Aziz, F.; Ismail, A.F.; Harun, Z.; Bahri, S.S.; Nagai, K. Electrospun Nanofibres Embedding ZnO/Ag2CO3/Ag2O Heterojunction Photocatalyst with Enhanced Photocatalytic Activity. Catalyst 2019, 9, 565. [Google Scholar] [CrossRef]
- Zhang, M.; Shao, C.; Guo, Z.; Zhang, Z.; Mu, J.; Cao, T.; Liu, Y. Hierarchical Nanostructures of Copper (II) Phthalocyanine on Electrospun TiO2 Nanofibers: Controllable Solvothermal—Fabrication and Enhanced Visible Photocatalytic Properties. ACS Appl. Mater. Interfaces 2011, 3, 369–377. [Google Scholar] [CrossRef] [PubMed]
Element | Weight % | Atomic % |
OK | 15.40 | 42.62 |
TiK | 0.32 | 0.30 |
CuK | 0.60 | 0.42 |
ZnK | 83.67 | 56.66 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
BethelAnucha, C.; Altin, I.; Bacaksiz, E.; Degirmencioglu, I.; Kucukomeroglu, T.; Yılmaz, S.; Stathopoulos, V.N. Immobilized TiO2/ZnO Sensitized Copper (II) Phthalocyanine Heterostructure for the Degradation of Ibuprofen under UV Irradiation. Separations 2021, 8, 24. https://doi.org/10.3390/separations8030024
BethelAnucha C, Altin I, Bacaksiz E, Degirmencioglu I, Kucukomeroglu T, Yılmaz S, Stathopoulos VN. Immobilized TiO2/ZnO Sensitized Copper (II) Phthalocyanine Heterostructure for the Degradation of Ibuprofen under UV Irradiation. Separations. 2021; 8(3):24. https://doi.org/10.3390/separations8030024
Chicago/Turabian StyleBethelAnucha, Chukwuka, IIknur Altin, Emin Bacaksiz, Ismail Degirmencioglu, Tayfur Kucukomeroglu, Salih Yılmaz, and Vassilis N. Stathopoulos. 2021. "Immobilized TiO2/ZnO Sensitized Copper (II) Phthalocyanine Heterostructure for the Degradation of Ibuprofen under UV Irradiation" Separations 8, no. 3: 24. https://doi.org/10.3390/separations8030024
APA StyleBethelAnucha, C., Altin, I., Bacaksiz, E., Degirmencioglu, I., Kucukomeroglu, T., Yılmaz, S., & Stathopoulos, V. N. (2021). Immobilized TiO2/ZnO Sensitized Copper (II) Phthalocyanine Heterostructure for the Degradation of Ibuprofen under UV Irradiation. Separations, 8(3), 24. https://doi.org/10.3390/separations8030024